Saarland University
Faculty of Natural Sciences and Technology |
Department of Computer Science

Master thesis

Semantic Structuring of Shapes and other Visual Data

submitted by

Daniel Mewes

submitted

August 27" 2013

Supervisor

Dr. Michael Wand

Advisor

Dr. Robert Herzog

Reviewers

Prof. Dr. Hans-Peter Seidel
Dr. Michael Wand

Eidesstattliche Erklarung

Ich erklare hiermit an Eides Statt, dass ich die vorliegende Arbeit selbststandig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement under Oath

| confirm under oath that | have written this thesis on my own and that | have not used any other
media or materials than the ones referred to in this thesis.

Einverstandniserklarung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die Bibliothek der
Informatik aufgenommen und damit veréffentlicht wird.

Declaration of Consent

| agree to make both versions of my thesis (with a passing grade) accessible to the public by having
them added to the library of the Computer Science Department.

SE-E o] ¥ o1 (=) o 1P
(Datum / Date) (Unterschrift / Signature)

I would like to thank everybody who has personally or
professionally supported me while writing this thesis.

I would especially like to thank Michael Wand and Robert
Herzog, with whom I had many fruitful and inspiring
discussions and who have supported me in developing and
implementing my ideas.

Further thanks go to the Saarbriicken Graduate School of
Computer Science, the Max-Planck society and especially my
parents for creating an appropriate environment and
providing funding to make my studies and research possible.

Table of Contents

1 INtrodUCHioN.......cooe e ———————————_ 1
2 Representing ODbjJecCts........cccciiiiiiniiiniiiniinsssssssss s s s e s s s 5
2.1 ReIAEEA WOTK. ...ttt e e e et e e e e e e e e e e e e e e e e aaaaaaaaaens 6
2.1.1 HOG IMage DESCIIPION. ...ttt 7

2.1.2 Harmonic Shape DeSCriPIOr...........coiiiiiiieeeeee et 8

2.1.3 Bag of Features MOAEl........ ..o 9

2.2 OUIN EXEENSIONS.ottt e e e e e e e e s e e e e e e e e e e e e e e e aaaaaeaaaees 11
2.2.1 Extending HOG 10 3Doiiiiiiiiie ettt e e e e e e e e e e e e e e e 12

3 Learning Semantic Attributes..........ccccooioiiiiisi s 15
3.1 REIAIEA WOTK. ... eiieeeeiiieee ettt e e e e e e e e e e e e e e e aa s e e eaeaeaeenens 17
3.1.1 KINearest NeIghDOT ... e 18

3.1.2 Linear Support Vector Machine............ceeeviiiiiiiiiiiceeeeee e 20

3.1.3 Learning a Latent Semantic Space...........cooov i 23

BT @ 18] N = T o) = (o] 1 SRR 32
3.2.1 Optimizations of the Stochastic Gradient Descent..............cccccoii. 33

3.2.2 Utilizing Ground-Truth Label Correlation (Soft Ranking)..............ccoovvvvviiiccinnnenn. 35

3.2.3 Aliasing Labels to Enable Non-Linear Decision Boundaries............ccccccoeeeeeeene.n. 36

3.3 EVAIUALION. ... e e 41
3.3.1 Evaluation MEtriCS.......cooeiiiiiieeeee e 42

3.3.2 Data SetS. ..o 45

3.3.3 Learning MEthOdS........couiiiii i e e s 48

G TR T I 1= 4) (o) = 54

4 Multi-Modal SemantiCs.........ccccccmmriiiiiiierrr e 57
o I = F= 1 (= To IR (o PSR 59
v @ 1N] Y o] o] oY= Tl o PR UPPROTR PNt 60
4.2.1 Multi-Modal WSABIE ... ettt e e e sne e e eeeeeenne 60
4.2.2 Application: A Multi-Modal Semantic EXplOrer.........ccccco oo 61

LG V7= 18 =i oo FO TR 62

5 Conclusion and Future Work.........cccccommiinmmnminsenssss s issssssssssseees 71

oI =Y =T =] 0 Lo < 73

1 Introduction

tagged photos @ tagged 3D meshes %% tagged scribbles

Find photos

Learning of a fast boat.

Describe this

S g Are Find
= ~— these | ? meshes
acar s like this

Illustration 1: Our goal: We are given collections of photos, 3D meshes, hand-drawn scribbles
or other visual data. Each object in these collections is tagged with a set of text labels. We
want to utilize machine learning in order to answer questions about the meaning and relation
of objects, or to retrieve specific kinds of objects from a collection.

Digital visual data comes in a variety of forms. There are manually modeled 3D shapes, 3D
scans of real-world scenes, two dimensional photographs and hand-drawn sketches. We as
humans have an amazing capability at assigning meaning to such data. If we see a photo-
graph, we can immediately tell which objects it is composed of. We can describe the photo by
means of words, or by drawing a sketch capturing important aspects of the photo. If we are

given a digital 3D model together with the appropriate visualization software, we can easily
understand its structure. We can segment it into symmetric parts, into semantic object
parts, and separate interesting features of the model from less salient background regions.

It has been a long-going endeavor to teach these skills which we so often consider trivial to a
computer. In the 2010 Iron Man 2 film by Marvel Comics, the super hero Tony Stark hands
his computer a scaled-down model of a theme park. After the computer scans and digitalizes
the model, Tony asks “How many buildings are there?”. The computer replies: “Shall I
include the hot dog stands?”. This scene from a science fiction movie is a prime example of
computers assigning semantic meanings and automatically structuring a shape.

In 1969, a group of researches at the university of Edinburgh built a simple robot called
“Freddy” which task was to recognize objects it looked at through a video camera. Freddy
already utilized machine learning and could be trained to recognize new objects. Its capabil-
ities were limited though, as it could only detect relatively simple objects which were placed
in isolation on a special table. The limited computational power available at the time also
made the process slow (roughly 10 minutes to classify an object). Details on Freddy can be
found in [Barrow et al. 1969]. Detecting individual objects in photographs composed of many
different objects, with varying lighting conditions and taken from a number of different
perspectives was out of reach at that time. Since then, research in the area of computer
vision has made great progress in solving this problem. Other research has focused on
locating symmetric (reappearing and/or similar) parts in 3D data, or on the retrieval of 3D
shapes from a shape database based on a key word or scribble query.

The recent availability of crowd-sourced data bases such as Flickr for images or Google 3D
Warehouse for 3D shapes makes access to vast amounts of visual data easier than ever
before. These publicly available data bases consist of pictures and 3D meshes respectively
uploaded by a large number of different users. While the images and shapes in these data-
bases come annotated with user-provided semantic labels, those annotations are often noisy
and inconsistent (see for example Illustration 11). Organizing these data sets by semantic
criteria therefore remains a difficult task.

In this thesis, our goal is to develop a method which — based on a large amount of input data
from one or multiple crowd-sourced data bases — can reliably answer questions involving the
semantic meaning of the visual data. We look at existing techniques to approach this
problem of semantic structuring with a special focus on 3D shapes. We suggest own exten-
sions to these techniques, and evaluate their effects.

In chapter 2 we look at how shapes can be represented in a form which makes their inter-
pretation by a computer easier. We then continue by looking at methods for establishing an
association between semantic labels and shapes in chapter 3. Finally, we propose a method
which enables the computer to derive an integrated notion of semantic structures across
different forms of visual data, and evaluate the method on 3D shapes, 2D photographs and
hand-drawn sketches in chapter 4.

Our contributions are as follows: We successfully applied the “WSABIE” method of [Weston
et al. 2011] to 3D shapes. Originally, the WSABIE method was developed for and evaluated
on photographs only. We quantitatively evaluated different aspects of this method and could
demonstrate performance benefits compared to a commonly used baseline method (linear

Support Vector Machines). Furthermore, we compared different shape representations
(descriptors) and could significantly improve over an existing standard descriptor by using
our own extension of the two-dimensional HOG descriptor to 3D shapes. Finally, our method
for the semantic structuring of multi-modal data shows promising results, and we present an
application for interactively exploring a semantically structured space of visual data. We
believe that our method can be easily expanded to cover even non-visual modalities such as
sound or text, making it a very powerful tool for tasks which involve a wide range of multi-
modal data.

2 Representing Objects

objects of varying size and fixed-size descriptors
complexity
Illustration 2: Objects of varying size and complexity (here: 3D meshes) are converted into a
fixed-length real descriptor vector. While some information is usually lost during this trans-
formation, the fixed size representation allows for easier processing and can be designed to
exhibit certain invariance properties (e.g. invariance against rotation and scaling). Meshes
from Google 3D Warehouse.

Many machine learning algorithms require that observations are represented as vectors
from a fixed vector space. Furthermore, the learning problem can be strongly simplified if we
can obtain a representation which is invariant under variations that are irrelevant for the
semantics of an observation, while still catching its most relevant properties. While it
depends on the application which kinds of information are relevant and which should be
ignored, there are some heuristics that often apply. For example if the task is to perform
object recognition in photographs, it is usually desirable to obtain a representation that is as
invariant as possible with respect to varying lighting conditions and different perspectives.

A descriptor is a function that takes input data and converts it into a fixed-length vector. We
consider descriptors for 2D RGB images and for 3D shapes. RGB is a way to encode a color

¢ €C as a three-dimensional vector, specifically C:=[0,1]3 where its components correspond

_5-

to the intensities of red, green and blue light frequencies respectively. A two dimensional
RGB image is a partial function ; :|R> — C defined on a rectangular area |0, w|X|0, /| where
w and / correspond to the width and height of the image. A 3D shape is a 2-manifold
QcIR® . Intuitively, the manifold property means that a 3D shape is a thin surface in the
three dimensional Euclidean space.

An image descriptor is a function D. :P|R?>—(C|—IR? where P (o) denotes the power set

img

and d €N is the dimensionality of the resulting descriptor vector. Analogously a 3D shape

descriptor is a function D : P(IRS]—>IRd. In the following, we use the word descriptor to

shape *
refer to both the descriptor function D,,, or D, as well as to the vectors that result from
applying this function to a given image or shape.

The general goal of a descriptor is to provide an efficiently computable mean for comparing
two pieces of data with respect to the criteria that are relevant for the application at hand.
Many descriptors are designed to have a specific component of it encode a specific character-
istic of the underlying data. Quantitatively comparing the characteristics of the underlying
data can then be accomplished by computing the Euclidean or a similar distance between the
corresponding descriptor vectors.

The descriptors we look at describe local properties of geometry and images respectively.
This means that in order to compute a descriptor, a center position in the shape has to be
specified, and the descriptor will be a different one for different center positions. While local
descriptors can be applied to a shape in total (e.g. by using the center of mass as the
descriptor center in a 3D shape), we assume that they are applied to a number of local posi-
tions all over the shape and we later combine these local descriptors into a global descriptor
for the object using the bag of features model (see 2.1.3).

2.1 Related Work

There are many different kinds of descriptors available. Among the most common ones for
2D images are the Scale Invariant Image Transform (“SIFT”) [Lowe 1999], 2D spin image
descriptors [Lazebnik et al. 2003] and Histogram of Oriented Gradient descriptors (“HOG”
descriptor) [Dalal et al. 2005]. [Winder et al. 2007] propose a framework in which descriptors
themselves can be learned. Their model is expressive enough to cover both SIFT and spin
image descriptors among many others. We look at HOG descriptors in more detail in 2.1.1.

For 3D shapes, some of the 2D image descriptors have more or less direct counterparts. Spin
images were originally proposed for 3D shapes by [Johnson et al. 1999]. Harmonic Shape
Descriptors [Kazhdan et al. 2003] utilize a transformation to a Spherical Harmonics basis in
order to derive a rotation invariant representation of local geometry. [Gatzke et al. 2005]
propose a descriptor which is based on curvature values along intrinsic “fans” spreading
from a given point. A descriptor that purely depends on intrinsic properties of the geometry

and is therefore invariant under some more complex extrinsic transformations of a mesh was
proposed by [Tevs et al. 2011]. We take a closer look at Harmonic Shape Descriptors and also
propose a way to adapt 2D HOG descriptors to 3D shapes.

In 2.1.3, we cover the “bag of features” technique which can be used to combine local descrip-
tors into a global description of a shape or image and briefly mention more sophisticated
models that can be built out of local descriptors.

211 HOG Image Descriptor

O

input image gradients spatial bins orientational bins histogram

Illustration 3: Histogram of Oriented Gradients (HOG) descriptor: The local gradients of an
image are assigned to a fixed number of spatial bins. Each spatial bin is further subdivided
into multiple rotational bins, to which the gradients are assigned based on their orientation.
The histogram that counts the number of local gradients assigned to a given bin form the
descriptor. Note that while we apply the HOG descriptor globally to the whole image in this
example, it is typically applied to a local neighborhood around a given center point only.

[Dalal et al. 2005] introduce a descriptor for images which they call the HOG descriptor
(Histogram of Oriented Gradients). The idea behind HOG descriptors is shown in Illustra-
tion 3. Both the number of spatial and rotational bins can vary depending on the application.
Furthermore, the rotational bins can either take the sign of the gradient into consideration
and span a full 360 degrees, or ignore the sign, in which case they span just 180 degrees of
the circle. [Dalal et al. 2005] achieved the best results in their application of detecting
humans by using relatively fine rotational histogram bins (around 9) and relatively coarse
positional histogram bins (3x3 in their case). They further added a “contrast-normalization”
step to make the descriptor robust under both global and local changes in image contrast. By
themselves, gradients are already invariant under additive changes of illumination. Thanks
to the use of a histogram, small variations in both rotation and position can be eliminated.
Note that HOG descriptors are still sensitive to large rotations. Specifically, changes in
image perspective can have a huge impact on the descriptor. For photos, this is sometimes
not a huge problem, as the upward direction is usually fixed, and the majority of photos are
taken with a camera orientation almost parallel to the ground. From [Dalal et al. 2005]:
“The subjects are always upright, but with some partial occlusions and a wide range of vari-
ations in pose, appearance, clothing, illumination and background. ”

In chapter 4.3, we will apply HOG descriptors not only for representing photographs, but
also for hand-drawn scribbles. Thanks to the configurability of HOG descriptors, we can
adapt the descriptor to cope well with the specific properties of such drawings. In a work
specifically aimed at working with scribbles, [Eitz et al. 2012] use Gabor-filter based descrip-

-7.-

tors, which — similar to HOG features — decomposes the local image data based on the rota-
tion of lines or edges. They also divide a local image patch into multiple “tiles”, which is
comparable to the spatial bins of the HOG descriptor. They found that having 4 different
orientations (spread over a 180 degrees) and a 4x4 grid of tiles yielded the best overall
results in their retrieval application. We use the same parameters for our HOG descriptor
when representing scribbles.

2.1.2 Harmonic Shape Descriptor

p p
o L
y p"q f f
i | p p
- = f i | I I
Phase Spectrum f f

input shape cut spherical shells at spherical harmonics concatenate spectra
different radii transform from all radii

Illustration 4: Harmonic Shape Descriptors: Spherical shells at different radii are intersected
with the input shape. The two-dimensional geometry on the surface of the shells is trans-
formed into frequency and phase components by a spherical harmonics transform. The phase
is discarded, and the frequency spectra from the different shells constitute the harmonic
shape descriptor.

Harmonic Shape Descriptors ([Kazhdan et al. 2003]) represent a local volumetric interpreta-
tion of a shape in a rotation invariant manner. This is especially useful for 3D meshes, where
the rotation of surface patches can vary widely. The descriptor is computed as follows: First,
the mesh is converted into a volumetric shape J'. In contrast to our earlier definition of a
shape (2 as a thin 2-manifold in R®, V' ©Q is constructed from (2 by adding a small ball
around each point ¢ €0 . More precisely, xEV =xeQV(Ice st.xeB, (c)) where B.(c)
is the ball of radius € around the center c .
Then, for a given point x€}', a number of
spherical shells of different radii around x
are intersected with /. The volume inter-

secting with each shell is approximated as
a linear combination of spherical
harmonics basis functions. The spherical
harmonics basis is similar to the Fourier

V 4

basis, but represents a function on a three .) .
Illustration 5: A rotation of the inner part of

dimensional sphere. Only the energies of

the different frequency components are this airplane model yields the same harmonic

pertained. The concatenated energy spectra shape descriptor as the unrotated version.

from all of the shells yields the Harmonic This represents a case where the harmonic

shape descriptor loses relevant information.
Illustration from [Kazhdan et al. 2003].

Shape Descriptor. By removing phase infor-

-8-

mation and keeping only the energy distribution of the frequency components, the descriptor
gains invariance against rotation. However, it also loses information about the relative phase
between the frequency components. Another disadvantage of the HSD is that the relative
orientation of the volumes across the shells of different radii is lost in the descriptor. Each
shell can be rotated against the remaining shells without influencing the resulting
descriptor. The effect is illustrated in Illustration 5.

2.1.3 Bag of Features Model
O (D |G| B

] IEIEIE A58
== Sl R il Ll

input image parts 1 descriptor dictionary assignment
per part yields a histogram

Illustration 6: Bag of features descriptor: The input data is partitioned into parts. A local
descriptor is calculated for each part. The descriptors are then assigned to a dictionary bin.
The number of assigned parts per bin yields a histogram which constitutes the bag of features
descriptor.

We have seen how to calculate descriptors for local patches of images and 3D shapes. In
order to obtain a constant-size descriptor vector for a whole observation, we use the following
technique, commonly known as the bag of words or bag of features descriptor: First, we
calculate local descriptors for all patches for all of the training observations. Then, we cluster
the resulting descriptors to build a dictionary of reference descriptors. There are different
ways in which the dictionary can be obtained (see [Coates et al. 2011] for an evaluation of
different methods), such as k-means clustering or randomly picking reference samples from
the set of calculated patch descriptors. In our experiments, we first reduce the descriptor
space to 16 dimensions using PCA ([Pearson et al. 1901]). PCA gives us a set of orthogonal
eigenvectors together with their eigenvalues. We take the eigenvectors that correspond to the
16 largest eigenvalues and compute their dot products with the descriptors. This provides us
with a 16-dimensional vector of coefficients for each descriptor, on which we then perform k-
means clustering in order to select k cluster means for our dictionary. The rationale behind
performing a dimensionality reduction first is that performing k means in high dimensional
spaces quickly becomes unreliably and inefficient, due to the “curse of dimensionality”.
When uniformly sampling random points in a Euclidean space, the “curse of dimensionality”
describes the effect that pairwise distances between such points become increasingly similar
as the dimensionality of the space increases. For high-dimensional spaces, this renders
Euclidean distances almost useless for obtaining information on where the points are located
(see e.g. [Beyer et al. 1999] for more details). To compute the bag of features histogram for a
given observation, we assign each part descriptor to the reference descriptor from the dictio-
nary which is closest to the descriptor in a Euclidean sense (alternative assignment schemes
are discussed in [Coates et al. 2011]). The resulting bag of features descriptor is then given

-9.-

by the histogram over the clusters. For our application, we rescale each bin of the histogram
individually to improve the performance of the descriptor under certain conditions further.
Specifically, each bin is rescaled by the reciprocal of the total count of parts that are assigned
to this bin across all training shapes. The rationale behind this modification is the fact that
some parts appear a lot more often than others (e.g. parts of a flat surface). However the less
frequently occurring parts are often at least as relevant for the characterization of a shape.
Some learning methods such as support vector machines (see chapter 3.1.2) or WSABIE
(see 3.1.3) are sensitive to this kind of imbalance, because they rely on symmetric regular-
izers.! Finally, we also normalize the overall descriptor vector in order to achieve invariance
against varying patch counts.

“chair”
“chair”

Illustration 7: Both meshes are tagged as "chair” (among other tags in the case of the living
room). However their global shapes are vastly different. Both meshes contain local parts
which are characteristic for the "chair” attribute though. Meshes from Google 3D Warehouse.

A special property of bag of features descriptors is the fact that they ignore both absolute as
well as relative positions of the patches. This can be an advantage, if observation are compo-
sitions of objects or characteristic elements, where their (relative) positions are unstable. An
example are photographs that show complex scenes combining a variety of different objects
(e.g. trees, cars and humans), where the positions of the objects in the scenes is not consis-
tent across pictures. There can however be cases where relevant information is lost due to
this invariance. Constellation models (e.g. [Fergus et al. 2005]) are a way to re-establish the
relative locality of parts. However they are more complex to use and implement, and we do
not cover them here in more detail.

Sampling Local Descriptors

We have seen how a set of locally computed descriptors can be combined into a single per-ob-
ject descriptor. A question which remains is how many and where within an object the local
descriptors should be computed. For images, we compute descriptors along a regularly
spaced grid. We remove high image frequencies by filtering the image through a Gaussian
filter. HOG descriptors have a limited spatial resolution. We chose the resolution of the HOG
descriptors (specifically the size of their spatial bins) to match the Nyquist frequency of the

1 In the context of an optimization problem, a symmetric regularizer is a regularizer which is invariant
under rotations of the solution (such as the L, norm and in contrast to for example the Ll norm). Both

WSABIE and linear SVM apply their regularizers to the coefficients of a linear classification function. In
this setting, the linear classifier will be penalized by a symmetric regularizer if it attempts to scale some
components of the descriptor much higher than others.

-10 -

grid spacing and the Gaussian filter bandwidth. When discretely sampling a continuous
signal, the Nyquist frequency is the highest frequency that the signal may contain without
introducing loss of information or distortions when reconstructing the continuous signal
from its discretely sampled counterpart later. This is known as the Nyquist-Shannon
sampling theorem, and the Nyquist frequency can be shown to be half of the sampling reso-
lution (here: the diagonal of the HOG bins). Note that the theorem does not say that
encoding any continuous signal by a discretely sampled representation at sampling rate r
allows a full reconstruction of all frequencies /' <(0.57. In contrast, the continuous signal
must already be guaranteed to contain no frequencies f >(0.57 before it is sampled. Other-
wise higher frequencies will typically introduce distortions on the lower frequencies during
reconstruction. Hence the need for Gaussian filtering in our approach. In practice, we use a
grid spacing of 1/16 of the total image width or height, whichever is greater. This results in
up to 256 local descriptors per image.

The same principles carry over to 3D shapes. Again we use a regularly spaced grid along
which to compute local descriptors. Just as in the case of 2D HOG descriptors, their 3D coun-
terparts that we introduce in chapter 2.2.1 have a well defined spatial resolution. The same
holds for Harmonic Shape Descriptors, which resolution is given by the spacing of the spher-
ical shells and the number of spherical harmonics considered. Often, many of the points on
the grid are located in empty space. We ignore these regions, and only compute descriptors
where they intersect with the shape. We use a grid spacing of 0.01+// with / being the
maximal diagonal length of the shape.

None of the local descriptors we describe in this thesis are invariant under rescaling of a
shape or image. In many data sets, this is a problem because the scale of a given object is not
well defined. In photographs, the size of an object depends on its distance to the camera. 3D
meshes often do not come with an absolute scale. To counteract this issue, we compute local
descriptors at different scales. In addition to the fine grids mentioned so far, we also
compute descriptors along grids that have (1.5)" times the grid spacing of the finest level
grid. The Gaussian filtering and resolutions of the descriptors are adapted correspondingly.
In practice, we use values for n from 1 to 5, yielding a total of 6 grid levels. Local descriptors
from all scales are combined into the same bag of features descriptor.

As a measure to reduce computational costs, we compute 3D descriptors only at locations
where the shape has a certain minimum principal curvature. This has the effect of ignoring
essentially flat regions of a surface. These regions often make up large parts of a shape,
while conveying little specific information about it. On the data sets we have tested, this
filtering reduces the number of local descriptors by a factor of 5 to 20 without negatively
impacting the performance of the resulting bag of feature descriptors in our applications.

-11 -

2.2 Our Extensions

The rotation invariant representation obtained by the Harmonic Shape Descriptor makes its
application to 3D models where their orientation is unknown and/or inconsistent very conve-
nient. However not only is the relative local rotation of geometry completely lost, but HSD is
also relatively fuzzy when it comes to representing sharp edges in a piece of geometry. The
HSD does not directly encode changes in the surface normals. Such edges can often convey
valuable information on a characteristic shape though.

We propose an adaptation of the 2D HOG descriptor to 3D shapes. We will also see how a
consistent orientation of a local piece of geometry can be established in many typical cases.

2.21 Extending HOG to 3D

We use an interpretation of HOG features
applied to 3D meshes and/or 3D point clouds.
The idea is to replace the image gradients used
in HOG descriptors by an oriented 3D counter-
part. We have experimented with two variants
of our descriptor: First, we used the oriented
principal curvature along a 3D manifold.
Secondly, we used the surface normals to build
the histograms. We call these descriptors HOC
descriptors for “Histogram of Oriented Curva-
tures” and HON descriptors for “Histogram of
Oriented Normals” respectively.

While in images we assumed that the upward
direction was more or less stable, and it was
possible to derive a full canonical coordinate
system by taking the direction orthogonal to
the upward direction as the second axis, this is
not possible in 3D anymore. For many user-gen-
erated models there still is a common canonical

upward direction. However different orthogonal
pairs can be picked for the two remaining axes

by rotating them around the upward direction. Illustration 8: Principal curvature of a

In order to build a consistently oriented 3D manifold. lllustration by M. Wand.
histogram around a given point on the shape

surface, we use the average normal around the point as a second direction. We assume that
normal directions are given. Where that is not the case, the normals can be estimated in a
pre-processing step by performing a PCA analysis ([Pearson et al. 1901]) of the local geom-
etry around each surface point. For building the histogram, we first project all surface points
onto the plane defined by the normal, and then use the projection of the upward direction
onto this plane to fix the orientation of the histogram on the plane. The sign of the normal
fixes the clockwise/anti-clockwise direction. The process is illustrated in Illustration 9.

-12 -

£ 4 4

surface normal fixes a projected upward sign of normal fixes
plane direction defines axes clockwise direction

Illustration 9: Fixing a local coordinate frame: The surface normal defines a plane in 3D
space. We assume a known upward direction. Its projection onto the plane and the orthogonal
direction fix two axes. Finally, the sign of the normal fixes a clockwise direction on the plane.

Thanks to the way we fix the local coordinate frame, our HOC and HON descriptors are
invariant under rotations, as long as the upward direction remains intact. Additionally, we
normalize the resulting histograms, in order to obtain a) invariance under changes of the
sampling density in 3D point clouds and b) invariance under scaling of the curvatures in the
case of HOC descriptors. Please note that the latter does not imply invariance under uniform

scaling of the whole shape, as the assignment of surface points into the spatial bins will still
change.

-13-

-14 -

3 Learning Semantic Attributes

Describe this

Tagged 3D meshes Find meshes
of a fast boat. 1

Illustration 10: We are given a set of training meshes, each with an associated set of semantic
tags. We use machine learning in order to learn an association between geometry and tags.
Our goal is to answer queries regarding the meaning of a shape, or to retrieve shapes from a
database by their tags (including shapes without a known tag set).

Assume that we are given a set of input meshes X, each of them represented by its d -
dimensional descriptor. Additionally, we assume that each training observation x € X has a
known associated set of text labels Y CY that specifies certain aspects of its semantic
meaning. By Y c}:O, l}w | we denote the set of all labels occurring in the input data. We use the
convention that an individual label is represented as a vector which has a one at exactly one
y||=1 . Note that the label sets given
in the input data can be noisy and/or incomplete. In fact some data sources such as Google

coordinate, and zeros everywhere else, thatis V ye€Y’,

3D Warehouse show label sets which are very noisy and contain a high number of both
semantically and geometrically vague or inconclusive labels (such as “awesome” or
“greatest”). An example for such a label set is shown in Illustration 11. Based on such
training data, our goal in this chapter is to obtain a way to reliably predict the semantic

-15 -

labels for a previously unseen 3D mesh. Some of the methods we will look at also allow to
work in the other direction, and can be used to locate meshes that best adhere to a number
of query labels.

awesome Aawesome car

car

eva muahaha
most

best car

cool car

cool

Illustration 11: An example of a noisy label set for a model from Google 3D Warehouse. Model
and labels by user 3Dprincess343.

All methods we will look at make use of the following prior: We assume that observations
x,x'€Xthat have similar descriptors also are semantically similar. For most kinds of
descriptors, this translates to “what looks similar, is semantically similar”. While this
assumption might not always hold, there is also a pragmatic reason for why is makes sense
to assume this prior: if the input data contains Gaussian noise or there are any numerical
instabilities in the computation of the descriptors, these factors will lead to slight variations
in the descriptor values. These slight variations should not have a dramatic impact on the
associated labels.

If the space of sets of labels was continuous (or more generally a topological space), this prior
could be formalized as follows: We assume that there exists an optimal (in the Bayesian
sense) classifier f': IR‘— P(Y), mapping a given descriptor to a set of labels, which is also a
continuous function. However, the power set P (Y) is not by itself a topological space, and a
continuous function cannot be defined on it. Completely formalizing the prior for P (V) is
difficult. A weaker, but still useful version of the prior can be formalized as follows: There
exists an optimal classifier f': RY— P (Y) , such that the set of points x €|R? at which fis not
constant (more specifically: at which there exists no ball of radius € >0 with center x over
which fis constant), is a thin set.

We look at a number of existing methods for label prediction in chapter 3.1. We then propose
a number of adaptations to one of those methods in chapter 3.2, and finally perform an
extensive evaluation of the methods and our proposed adaptations on both 3D mesh and 2D
photo data sets in chapter 3.3.

-16 -

3.1 Related Work

A broad variety of shape retrieval methods have been proposed. Shape retrieval allows to
retrieve shapes from a database which are similar to a given query shape, and in some cases
to retrieve shapes based on a query label as well. Many methods are based on a robustly
designed descriptor, on top of which a similarity between shapes can be defined. The SHREC
Shape Retrieval Contest is held annually to compare results of current developments in this
area. An overview of recent methods and their performance can be found in the results of
SHREC 2012 [Li et al. 2012]. We take a look at the K Nearest Neighbor retrieval method,
which is based on a distance metric defined on top of a descriptor, in chapter 3.1.1. Other
methods employ learning to improve the similarity metric for the specific task given. Based
on an annotated set of training shapes, a classifier is trained to reliably separate shapes
from different semantic classes. Among others, this has been done by [Li et al. 2007], who
use a special kernel over local surface descriptors for training an SVM. [Bronstein et al.
2011] apply a method called similarity-sensitive hashing to improve classification results. We
have a closer look at linear support vector machines (SVM) in chapter 3.1.2, which is a very
frequently used method for learning classifiers. Finally, we look at the WSABIE method in
chapter 3.1.3 which specifically aims at learning image attributes in large scale databases
with noisy annotations. The method itself can be applied to other kinds of input data as well,
and we will see how it performs for classifying 3D shapes later.

-17 -

3.1.1 K Nearest Neighbor

Q b.‘%e xb&e [0 '% &9
car oar o car
car b&e car b&e car b&e
car bn.«—:- o oar bfze oar bfze
house house house
O ° O ©
househouse z;g;househouse 2;3§hausehouse
@] @]
house car |F26¥ house car |F26¥ house car |F2€f
training data queries (k = 1) queries (k = 3)

Illustration 12: K Nearest Neighbor querying example. We are given a number of training
descriptors in IR? with associated labels (car, bike, house). We obtain predictions for the
queries g, and 4, by considering their k nearest neighbors in the training set. We show hypo-
thetical predictions for k=1 and k=3.

The k nearest neighbor (short: kNN) method is one of the easiest methods for label predic-
tion. We assume a set of training observations S represented by their descriptors

Xy eees X| S‘EIRd . Further, we assume that each training observation x; has a single associated

ground-truth label y,€Y . Our goal is to predict the label of a non-training observation with
descriptor x .

Assume that we have a distance metric disz: IR XIR? —IR" on the descriptor space R?. We
define the dissimilarity of two observations through the distance dist between their respec-
tive descriptors. For kNN, this distance metric is fixed a priori. In chapter 3.1.3 we describe
a method which — while sharing some concepts with kNN — derives a similarity measure
specifically tailored to the training data given. Here we make the additional assumption that
observations that are similar with respect to this definition, also — at least in tendency —
share the same label. From this assumption follows a very easy method for predicting the
label of x : We look through the training descriptors x,, ..., X5 , and pick the one that has the
smallest distance to x . Assume this descriptor is X; . Then, we can predict the label for x to
be y,. After all, it looks similar to X, which also has this label. This is the simplest form of
the k nearest neighbor method with k=1 . The k=1 simply means that we have considered
only one neighbor of x in the descriptor space, here X, .

We can extend this method to £>1 . Instead of just determining the training observation
that is closest to x , we determine the & closest ones, x 's k nearest neighbors. Assume that
we have determined X, ..., X, to be those neighbors. We can do so without losing generality,
as the indexes of the training observations can be permuted arbitrarily. If y,=...=y,, we
would obviously predict y=y,=...=y,. However it can happen that the neighbors do not
agree on a single tag. A frequently used method to solve such conflicts is to predict the label
that receives the highest number of votes among the k nearest neighbors. If the result is still
ambiguous, higher weights can be assigned to the votes of closer neighbors. This can be done

-18 -

in a way which guarantees an unambiguous result (assuming no two neighbors have the
same distance to x). Alternatively, one could dynamically increase the number of neighbors
considered until the ambiguity is resolved

The k nearest neighbor method comes with a number of limitations. First, it usually requires
a high number of training samples. It relies on the ability to find a similar looking observa-
tion in the training set. In contrast to some other methods, it cannot learn deeper structures
in the data. For example assume a case where out of all the components of the descriptors,
only one actually determines the label. With symmetric metrics such as the Euclidean one,
the prediction results will be heavily influenced by the values of the remaining components.
The k-nearest neighbor method cannot detect the underlying structure, and has to rely on a
sufficiently dense sampling of the descriptor space through a high number of training obser-
vations.

Another problem with k nearest neighbor methods is the so called curse of dimensionality. If
the descriptor space is relatively high-dimensional (e.g. d =128), two problems arise. First,
many metrics become very unreliable. Specifically, pairwise distances between uniformly
distributed points in the high dimensional space become increasingly similar, making them a
bad criteria for distinguishing between points. A theoretic and empirical evaluation of this
problem can be found in [Beyer et al. 1999]. Secondly, many implementations of k nearest
neighbor search become computationally inefficient for high dimensions (e.g. kd-trees).
Certain tricks can be used to mitigate these problems. For the latter problem, approximate
nearest neighbor (ANN) techniques such as [Arya et al. 1994] can be used. Generally, this
will lead to less accurate prediction results. Another method is to reduce the dimensionality
of the data. In contrast to ANN algorithms, this can also improve the stability of the distance
metric. An often used dimensionality reduction approach is the principal component anal-
ysis, or PCA ([Pearson et al. 1901]). PCA first re-centers the data points such that the mean
of the data end up at the origin, and then determines orthogonal directions of maximal vari-
ation between the data points. The descriptors can then be converted to a lower-dimensional
representation through a simple affine transformation. In cases where the relevant compo-
nents of the data lie in a low-dimensional subspace of the descriptor space, the dimension-
ality reduction through PCA will lose little information and work well to improve the
running time of the algorithm (compare [Beyer et al. 1999]).

-19-

3.1.2 Linear Support Vector Machine

o) b’ze b;ze le) o] b&e bfze
car car car
o car bike o car bike
i ¥ e i car ... bike
car car car
= d car d|
IR IR
o bike biYe o 0 bike e
car car car O""-
car bfze ® gar*, brze
car b &e car car "-‘,‘_:.' b fze
o o At
car_.. . car e =
b;!’(& cgr d b;ze cgf.:%,_ d
............ IR 3 |R

linearly separable vs.
non-separable data

translating and
rotating the separating

1. max-margin hyperplane
2. soft-margin

hyperplane

Illustration 13: Linear Support Vector Machines: Linearly separable classes (here: car and
bike) can be separated by a linear hyperplane. Usually, the separating hyperplane is not
unique and can be translated and /or rotated. The max-margin hyperplane is a canonical
separating hyperplane used in Support Vector Machines (in circles: the support vectors). Soft-
Margin Support Vector Machines can be used to handle non-linearly separable data sets.

Linear support vector machines (SVM), initially introduced in [Cortes et al. 1995] as
“Support-Vector Networks”, solve learning problems where there are two non-empty classes
of observations in IR? which can be separated by a hyperplane through IR’ . More specifically,
if there are classes)|, V,, a support vector machine will learn a classifier 1y, belR¢ such
that w-x,—b <0 for all observations X, of class y, and w-x,—b> 0 for all observations of class
¥, . At first, we will assume that such a classifier exists. Data for which this is the case is
called “linearly separable”. In general, there are multiple such classifiers which perform
equally well on the training data. Support vector machines use the concept of a “maximal
margin” to pick a canonical one. We look at how this is done and what the “support vectors”
in a support vector machine are. Afterwards, we look at “soft margin” support vector
machines, which allow to find a canonical classifier also in cases where only a subset of the
data is linearly separable. Finally, we will see how multiple support vector machines — each
being capable of handling two classes only — can be combined to perform multi-class predic-
tions, as required in our label prediction problem.

-920 -

Assume that we have found a separating hyperplane /= } xEIRd|w~ x—b:OZ{ . This hyper-
plane is often not a unique solution to the problem posed above. Illustration 13 shows an
example for such a case. Still, it seems that intuitively, some of the solutions would gener-
alize better to unknown data than others. Support vector machines use the maximum-
margin criteria for picking a unique solution. The margin of a hyperplane H is defined as
my(H):= min mxi—xm
x,E€S,xeH

An SVM picks from all the separating hyperplanes the one that maximizes m¢(H) . We call
this maximum-margin hyperplane H . Tllustration 13 demonstrates the process. It follows
from the definition of the margin that there is a certain set of points which lie exactly on the
margin. For the maximum-margin solution H , there is at least one point per class lying on
the margin. If this was not the case, the hyperplane could be slightly shifted towards the
class which does not have a data point on the margin, thereby increasing the margin. This
contradicts the maximum-margin assumption on H . The points on the margin are called the
“support vectors” of the support vector machine. We can modify the initial definition of a
hyperplane which separated the classes),,), to incorporate the concept of the margin:
without loss of generality, we can replace the criteria w-x,—b <0 for observations X, of class
Y, byw-x,—b=<—1 and for the x; of class ¥, by w-x,—b=—1 . This definition is equivalent
to the original one, as the magnitude of w can be freely changed without actually changing
the resulting hyperplane. All hyperplanes { x€R? loew-x— b:O} are equivalent for all

x€R”". In this formulation, the margin of a separating hyperplane // can be simplified to

; 1
mS(H)Zx,eT,lxneH mxi—xmzw

As we want to maximize 7(H) , the resulting optimization problem is as follows:

. <1 iy
min||w|| subject to \/ x,€ 5, w-x,— b { <-1 ¥f X; ¥s of class y,
" >1 if x, isof class y,

To simplify the optimization of the problem, min

w, b

|w|| is often replaced by mm{%HWH2 ,

w, b

which reaches its minimum at the same parameters as the original formulation.

So far we have assumed that the given training data is linearly separable. In reality, data is
often noisy, the descriptors used might not always contain enough information (or contains it
in a form not suitable for linearly separating the data), or some of the data points might have
been mislabeled with the wrong class. We would like to derive an adaptation of the support
vector machine optimization problem which still has a solution in such cases. Also, we want
the solution to be “as close as possible” to the maximum-margin solution in the case of
completely linearly separable training data. Please note that we still maintain the require-
ment that a majority of the data can be linearly separated. We will look at an alternative for
non-linear classification in chapter 3.2.3. [Cortes et al. 1995] introduce the idea of a “soft
margin” solution. A soft margin of a hyperplane is a margin which can be penetrated by
some of the data points. Formally, we relax our previous hard constraint w-x,—b<—1 (for

-921-

V) tow-x,—b=<—1+E,, where E,EIRZO is called the “slack variable” for x,. We do the same
for ¥, . We can then formulate the optimization objective such that penetrating the margin is
discouraged, but permissible when necessary:

[Is|

min ‘L%HWHZ"‘CZ EI} subject to V x,€ S, w-x,—b {
i=1

w,b,&

<—1-§,
>1+E,

if x; is of class y,
if x; 1s of class y,

The parameter C > 0 determines how strongly a violation of the margin is penalized. The

Isi .
term Z'—1 &,in combination with the side constraints is often referred to as the hinge loss.

0, 1_f<xi)tx,

For a general classifier /it can be rewritten as losshingc(xi):zmax , Where

1, =—1if x;is of class ¥, and 7, =1 otherwise.

We have explained how soft-margin support vector machines can be used to learn a classifier
that distinguishes between to classes ¥, ¥, . Our initial goal was to obtain a classifier for
predicting labels from an arbitrarily sized label set ¥'. An observation X; could have any label
;€Y assigned to it. We look at two prominent schemes of how binary learning methods and

their resulting classifiers can be combined to multi-class classification methods: The one-ver-
sus-one, and the one-versus-rest scheme.

In one-versus-one, we first build all label subsets of size two { Vi Vi } <Y . We then indepen-
dently train a binary SVM for each of those pairs. This yields a classifier

Sialx)= {y»" if Wj,k"x_bj’k<0
| v, otherwise

The two-class classifiers can now be combined into an overall multi-class classifier. Different
methods can be applied. A simple one is to count how many of the binary classifier “vote” for
a specific label, and classifying a given data point as the label that received the highest
number of votes. As an extension, votes can be weighted by how far away the classified data
point is from the respective decision hyperplane (more distance — more stable classification).
A disadvantage of the one-vs-one schema is that it requires a quadratic number of binary
SVM, and that it might become unreliable if some of the classes have only few training
samples available.

[2) 5 o [§) e e @ O
-~ 0‘ o . o. d o) - fo)
000000 o o;o’o (6] oo'O (6} O'OOO
o . e o «* %9 %5 = Og
(9] . @ » O]
‘. o © . o ® L0 ° " e *
| |
A 5) b *) * o R)
o . e (6} o o R
* »
o . (o] 20 o"
* q n ™ 3 L})
R R N R - R
car « bike, fast «» car, slow «» car, bike < car,
slow, bike, bike, slow,
fast slow fast fast

Illustration 14: One-vs-rest scheme for applying SVMs to multi-class problems.

-9292 -

Another common strategy is the one-vs-rest strategy. Here, we segment the training observa-
tions into a set ; containing all samples of class) ; and a second set S, =S —S ;. We assign

a separate class y'¢&Y to the set of observations in S, and train an SVM, yielding a classi-
fier

fj(x)ZZ{yj if wj-x‘—bj<0
y' otherwise

Again, we combine all of these classifiers (we get |Y| of them) into a single multi-class classi-
fier. For example we can define the unified classifier as

f (x):zar/gl(?z)in }:wj.-x—bj}

Attempts have also been made to adapt the SVM learning objective itself in order to support
multi-class learning directly, for example [Crammer et al. 2001].

3.1.3 Learning a Latent Semantic Space

eva

aWwesome

car awesome car
cool most

muahaha

best car
— cool car
_—

Illustration 15: Complex label sets from user-annotated data can often be reduced to a smaller
number of major semantic concepts. We would like to encourage our learning scheme to auto-
matically detect such redundancies in the label sets. Original label set from Google 3D Ware-
house.

[Weston et al. 2011] propose a different approach for learning descriptor-label associations. A
special aspect of their approach is that it forces the learned model to have a low number of
effective dimensions, despite a potentially very high-dimensional label space. The method
tries to perform this dimensionality reduction with as little loss of information as possible.
As a consequence, labels which are related in one of the following ways are automatically
detected: 1. labels which frequently occur together in the ground-truth label sets, or 2. labels
for which the associated training objects cannot be discriminated from one another within
the boundaries of the model used and the information available in their descriptors. The
dimensionality reduction can be used to increase the computational efficiency of the model.

-93-

Additionally, it has the effect that strongly related labels are optimized jointly, each taking
advantage of the other labels' training data. This concept is similar to what is often
attempted in recommendation systems, where the goal is to predict the taste of a user based
on only a small number of known ratings or preferences known about them. If a low-dimen-
sional “preference space” can be learned from the sparse set of known preferences of a huge
number of users, a small number of known preferences for any given specific user suffices to
constrain their position in this space and recommendations can be made based on that infor-
mation. A prominent example is [Rennie et al. 2005].

In this chapter, we first introduce the loss function that [Weston et al. 2011] use in their
training. Next, we look at how they make use of a low-dimensional latent space in order to
regularize the resulting model and speed up the training calculations. Finally we see how
the loss function can be optimized.

For our application, we assume that as input data, we are given a number of training obser -
vations, each represented by an associated fixed-length descriptor x,&€ IR’. Further, we
assume for now that there is a set of labels, and each observation X, is annotated by exactly
one associated label y,. The restriction to a single label per observation will be lifted at the
end of this chapter. We refer to the set of all labels by Y, and to the set of all training obser-
vations by X. Our goal is to learn an efficiently computable function @ :R?—R" which,
given a descriptor, provides us with scores for the different labels. In the following, we
assume that @ is a linear mapping. We want the labels that apply the most to the given
descriptor to receive the highest scores, and the ones that do not apply as much lower scores.
We will see how to formalize this objective in the following section.

-24 -

Rank Loss and WARP Loss

y=>x y'=d'x
Otz. Otl.
1/1 1. awesome 1/1 1. bike
2. car 1/2 2. chair
3. chair 1/3 3. fast

4. cool 1/4 4. cool

5. bike 5. car

6. fast 6. awesome
rank loss

Illustration 16: We want to compare two classifiers ® and @ ' with respect to their predictions
yand y'for a given shape with descriptor x . The rank of the correct label ("car”) is deter-
mined and all violating labels (incorrect labels ranked above the correct label) are assigned a

penalty &; based on their rank. Summing over these penalties yields the rank loss of the

respective classifiers for x . Mesh from Google 3D Warehouse.

In order to derive a suitable mapping ¢ , we first have to define a criteria to rate how “good”
a given candidate @ is, given the available the training data. Given a prediction y,,,,=® (x;)
for one of the training observations, [Weston et al. 2011] use ideas from [Usunier et al. 2009]
to derive a loss to this prediction. First, all labels are ranked based on ., . The rank of a

label y is given by
rank ,(x;):= > 1(®,(x,)<®,.(x,)

y'er—{y}
where ¢ y(x,) is the component of ¥ »rea that corresponds to the label y , and
I(x):= 1 1fx:t1"ue
0 otherwise
is the indicator function.

In the simplest case, we can define a rank-based loss for x; as follows:

L, (x,): rank , (x;)

_ 1
Y|—-1
where), is the ground-truth label for x; . Note that 0<L,, (x;)<1 .

-95 -

The overall risk for @ then follows as
1
risk(®):=— > L, (x.
() |X’ Z)(P lm(1)

[Weston et al. 2010] point out that in cases where no perfect fitting of the training data is
possible, this risk does not necessarily lead to good predictions on the top rank(s). For
example consider two alternative models @ ,® 'where ¢ puts the correct label for observa-
tion x, at rank 1 and for observation X, at rank 100, while @ ' puts them at rank 50 each.
Assuming all other predictions are equal, risk (®)=risk(®'), even though — if we are inter-
ested in deriving good predictions on the top ranks as much as possible — @ actually
provides the better predictions. [Usunier et al. 2009] generalize the notion of rank loss,
allowing to incorporate considerations of this kind. The idea behind this notion is to assign a
weight & ; to each of the |Y'|—1 potentially violating ranks. The loss for an observation X, is
the sum of the weights ; for all the ranks of violating labels y# y, for which rank y(xl.) is
higher than the rank of the correct label rankv‘, (x,):

rank , (x;

)
L(x,):= Z::I «;

[Usunier et al. 2009] put the additional constraint on the weights that &, =, =...=2x;,_, and

[Y|-1
Z_ o,=1. To resemble the earlier introduced linear rank loss L, , we would set
] A

aIZ...:a‘Y|:[|Y|—1}_1. [Weston et al. 2010] use linearly decreasing weights, defined in
[Usunier et al. 2009] as

lyl-1 -1
1

o =—%
;==
J

1

<!
jr=1J

[Usunier et al. 2009] also propose a variant that uses constant positive weights for the top p
ranks, and zero weights for the remaining ones, as well as a variant which uses exponen-
tially decreasing weights, which were not used in [Weston et al. 2010] though.

Stochastic Gradient Descent Optimization

While we have defined a risk function that tells us how “good” a given model @ is, we have
not talked about how the best model for a given set of training data can actually be found.
The high number of degrees in which ® can be varied (d*|Y|), exhaustively testing
different @ for their associated risk is not feasible. Luckily, there are many known methods
for efficiently optimizing objective functions of the form F:IR"— IR . Our risk fits into this
definition if we represent the linear function @ as a vector of its coefficients. Gradient
descent is one of the simplest iterative methods for finding the minimum of convex, differen-
tiable objective functions /. Starting with an initial guess b €R", an updated solution is

obtained in each iteration:

bi+l:bi_yivF(bi)

- 926 -

where Y, is the step size. The step size can either be constant throughout all iterations, vary
in a fixed pattern (often monotonically decreasing), or can be adaptive based on the current
state of the optimization. When using a fixed step size, a high value usually leads to faster
convergence in the first iterations, but a lot of oscillations at later ones, including the possi-
bility of never actually coming close to the optimum. Small values on the other hand usually
approach the optimum on a more direct path, but take more iterations for obtaining the first
rough approximation. We will compare different options with respect to their convergence
behavior in our application in 3.2.1.

We could apply gradient descent for [Weston et al. 2010] to minimize 7isk (@) . Two problems
occur when attempting this though: First, risk(®)is not differentiable at a number of
points, as it is based on the indicator function. What's worse, at the points where it is differ-
entiable, its gradient is zero. Thus, gradient descent would never make any progress. In the
next paragraph, we will see how [Weston et al. 2010] circumvent this problem by replacing
the indicator function with a differentiable hinge loss formulation. Secondly, we will see that
even with that formulation, computing risk (®) is expensive for large data sets and/or a high
number of potential labels. We will look at the idea of stochastic gradient descent to work
around this issue.

Let us first look at the issue of the non-differentiable risk. In [Weston et al. 2010], the loss
for a single observation X; is first rewritten as follows:

rank, (B (x,)) g o 10, (x)<®, (

tank o yi\Ti y
rank , (®(x;)) (x’)yyeyz_“{yl} rank , (®(x,)

L(x,)=L(x,) ;CI))

with L (x,)=0 if I’anky,(@ (x;))=0 . In order to obtain a differentiable function to use for the
gradient descent optimization, L (xi) and rank },‘(QS(X ,)) are held constant in each iteration
step, and we concentrate on / (‘I’y,(x,-)ﬁ¢ y,(x ,)) to obtain a gradient. While this term is not
yet differentiable, this will serve us as a basis for additional modifications in the next para-
graph. On first sight, this decision seems very arbitrary. We have multiplied the original loss
with a term which is equivalent to 1, and then decided that we would like to base our
gradient computation on only a specific part of this 1-term. We could have chosen any other
representation of 1, and could doubtlessly end up with vastly different gradients. However

basing the gradient on ZV 1 (q5},l(x[)£¢},,(x[))makes sense because it actually

‘€Y —{y;}
behaves very similar to L (x,) . It ignores the weights « ;» but as long as we consider only a

single observation X, in our loss, minimizing Z y](qSyl(xl,)gcp ,(x[)):ranky’(d%xi))

V

y'er—{y} Y
will also minimize L (x,) . While this does not hold anymore when we later combine multiple
such losses into a risk spanning all observations, the assumption will still hold locally in the
sense that slightly modifying & such that it approaches the optimum of rank y,(‘p (x,)), will
also bring the overall risk over all L (x,) closer to its optimum (except for a thin set of points
in the parameter space, across which the ranking of a label actually changes for one of the
observations). In the following paragraphs we will see how rewriting L (x,) like this will
allow us to apply some further modifications, which will ultimately make the application of a

gradient descent based optimization method very efficient.

-97-

[Weston et al. 2010] modify the variable term / (45},,()6 ,-)S@ y,(x ,)) in two aspects: First, they
introduce a margin like in SVMs (compare chapter 3.1.2): [(dsy,(x,-)ﬁds y,(xi)—i- 1). The
margin will play an important role in the next chapter, when we introduce regularization.
Secondly, to make the loss and thereby the risk differentiable, the indicator function is
replaced by the hinge loss similar to a soft-margin SVM:

1-9 (x)+9,.(x,)
LmnkHinge(xi)::Ll(xi) Z | |
y'ey—{y} Vanky’(@(x[))
where |x|, :=max {x,0} , and margin-penalized variants of the rank
rank Z 1(45 (x,)<®, (x;)+1)
y'eY—

and discrete loss

7 ank

za

are used. The effect of these changes is that even if @ classifies a label correctly, it still
results in a non-zero loss unless the score of the correct label is at least by one higher than
the score of the highest-ranked wrong label. While the resulting risk

. 1
VlSk rankHinge ((p) = m Z LmnkHinge(xi)

is still not convex over the course of multiple iterations, it is always differentiable and yields
non-zero gradients until an optimum is found (remember that @ is a linear function).

As mentioned before, computing rl‘skl(tp) is an expensive operation, requiring computation
time in O(|X||Y|| (assuming constant costs for evaluating @ (x)). [Weston et al. 2010] use
stochastic gradient descent to mitigate this issue. In each iteration, stochastic gradient
descent picks one training observation randomly. Say that we pick observation x; with a

probability of P (x,) , then the stochastic risk estimation is given by

1
P(x,)

1

(P):=

SVlSk rankHinge Lm”kage(x[)

Computing srisk mnkage(Qb) can be performed in O(|Y|| . While this makes each iteration a lot
faster, we will also need more iterations to obtain good training results. However overall
convergence can still be faster if there is redundancy in the training data. More details on
the convergence behavior of stochastic gradient descent can be found in [Bottou 2003].

While the
worst-case complexity of their estimate is still in O |Y|} , their stochastic estimator is claimed

[Weston et al. 2010] additionally introduce a stochastic estimator for L, . -
to be faster in practice. Assume an observation X; has been sampled in a particular iteration

of the stochastic gradient descent. The estimation of L works by repeatedly sampling a

rankHinge

random label YEY —{ »,} and checking if it is better ranked than the ground-truth label y,

-98 -

(or violating its margin): 1+¢fv(xi)>¢y,(xi>- This sampling is repeated until such a
violating label has been found, up to a maximum of |Y|—1 times. Let N be the number of
trials before a violating label has been found. Then an estimate for rank ; (x) is given by

En

rankﬂlvr (x,)~ floor

N

and an overall stochastic estimator for L. is given by

1—‘I’},~1 (X,»)+ (pjr(xi)

SLrankH[nge<xi).)7i1 5}> ::Ll(xi)

i
where L'(x,) can be computed based on the approximate estimate for rank)l(x,) .

Clearly, the sooner a violating label is found, the more computation time is saved by this
approach. The main benefit of using the estimate can therefore be expected at the beginning
of the optimization and for very complex datasets, where perfect label prediction results
cannot be obtained.

Handling Multi-Label Data

[Weston et al. 2010] define the losses and optimization steps under the assumption that for a
given observation X, , there is exactly one ground-truth label y,€Y . However many complex
data sets such as Google 3D Warehouse or Flickr can have multiple labels for any given
object. We denote the set of ground-truth labels for observation x; by ¥’ %< Y We

adapt the single-label learning scheme as follows: In each iteration, we randomly sample one
of the ground-truth labels ¥,€Y , for the previously sampled observation x; . We redefine the

(margin-penalized) rank of J, such that it ignores how J; gets ranked compared to the other
ground-truth labels of the same object:

mnk;(x,l):: Z I(®,(x,)<P,.(x;)+1)

y'er-r,

For stochastically estimating mnk; (x) (see previous paragraph), we now sample only labels

V€Y =Y _ in the sampling loop, and the estimated rank is then given by

Y[=|y,

rank;(x,)= floor

-99 -

To sum up, a single iteration in the WARP optimization for multi-label training data works

as follows:
1. Sample an observation x,€ X
2. Sample a ground-truth label ¥,€Y y, from the ground-truth label set of x;
3. ForNZl“'(|Y|_‘Yx,)
1. Sample a random label yE€Y —Y
2. Check whether 1+@;(x,)>®, (x,) . If yes: continue in step 4
4. Compute the stochastic estimate for the loss L,z
5. Compute gradients and update ¢ accordingly (see next section)

Low-Dimensional Latent Space Learning

d=U"V

Y cR” latent space X cR?

Illustration 17: Using a low-dimensional latent space to express semantic similarity: Both

labels and descriptors are mapped into a common low-dimensional latent space through
linear mappings U and V respectively. The dot product of their embeddings in the latent space
corresponds to the semantic similarity between descriptors and /or labels. Illustration by M.
Wand and R. Herzog.

Building on the rank-based risk function introduced in [Weston et al. 2010], [Weston et al.
2011] shows how to learn a low-rank classifier for assigning labels to input descriptors in
what they call the “WSABIE” method.

[Weston et al. 2011] use a linear classifier <R with two constraints on & . First, &
must be of rank no larger than D, ie. it can be written as ¢={/" Jy with matrices

UecR” peR”. Second, the norm of the columns of these matrices is limited:

-30 -

V1=<i<|Y],||UJ,<Cand V1=<i<d,||V |,<Cfor a constant CER*. We first explain the

rationale behind the rank limiting and give an intuitive interpretation of its effect. We will
then see how limiting the column-norm provides an additional regularization to counteract
over-fitting.

The idea behind limiting the rank of the classifier is to force it to utilize semantic or visual
overlap between labels. This is most useful in settings where the label set Y is huge and
contains semantic redundancies. For example crowd-annotated data sets often contain
synonyms, or words from different languages. Without the rank limit, all of these would be
learned and modeled completely independently of each other. By introducing the rank limit,
training samples from different but synonymous labels will tend to be “coupled together”
during the training. Finally, learning a low-rank linear classifier reduces the number of vari-
ables, making the training and later classification more computationally efficient.

The factorization ¢={/” J/ provides an intuitive interpretation of the low-rank scheme.
Assume a D -dimensional Hilbert space with the following semantic interpretation: The
inner product between points in the space corresponds to semantic similarity. We can now
formulate the learning objective as follows: We want to find mappings U €R” <7 and
J €lRP*? that map labels and images respectively into the common Hilbert space. The
resulting positions of the training observations should be consistent with our semantic inter-
pretation of the space. Specifically the inner product of semantically similar labels and
images in this space should be high (compared to less similar pairs). We define the similarity
between two points s, , S2€|RD in the semantic space as the usual inner product (s,,s,) . In
order to classify a given image represented by its descriptor x €IR? , we calculate its position
in the semantic space J x and then perform a nearest-neighbor search to find the nearest
label y €Y with respect to the similarity (7 x, U y). Remember that we represent a label
y€Y as a unique |Y| -dimensional vector consisting of a one in one component and zeros
elsewhere. Then performing the closest-neighbor search in the semantic space is equivalent
to computing ¢ y=U " J x , ranking the components of the resulting vector and interpreting
them as prediction ranks of the corresponding labels.

To counteract over-fitting, the column norms of the involved matrices are limited by a hard
threshold, specifically V' 1 <i<|Y|,|U |,<Cand V 1 <i<d,||V |,<C. [Weston et al. 2011]
claim that this “acts as a regularizer in the same way as is used in lasso” (compare [Tibshi-

’

rani 1996]). Unfortunately [Weston et al. 2011] do not provide additional information on how
exactly the properties of Lasso, which is defined for least-squares optimization problems,
carries over to the given rank-based optimization problem. In fact, on the first sight, this
kind of regularization might appear odd. Assume that we have an optimal (potentially over-
fitted) solution with respect to the training data U, V', that does not adhere to this regu-
larization. As our classifier is rank-based, we can easily derive a solution U ', JV' which is
equivalent with respect to its predictions, and fulfills the regularization criteria. For

example, such a solution can be obtained as U':=c U, V':=c 'V where

opt » opt ?
U\Y\ |V1|

|V d||2} . However it turns out that while this solution
is equivalent to U, V', with respect to the classification predictions they make, it is not

c=max {|U |, ...,

2 PR

generally equivalent with respect to their losses. The reason for this is the fixed-size margin
that we had added to the loss L 'earlier, and which would not work without the regularizer.

-31-

The matrices U and } are optimized directly in the WSABIE method, rather than optimizing
& and deriving a factorization ¢ =/ J/ afterwards, which would be more computationally
expensive and would make enforcing the rank constraint difficult. At the beginning, U and
V are initialized randomly. In each iteration of the stochastic gradient descent, the loss

Ll(xl-) for a sample observation X;is computed as explained earlier, based on a sampled

ground-truth label ¥,€Y, and a violating label V€Y —Y . The gradients for the update
steps are then given by the following equations:

N N\ r . — A
aLi'unkHi/1gf’ (x.)—/)A;): {(y_yl)(sz) lf SLmnkHinge(xini’y)>0
ou e 0 otherwise

T

aL"aﬂk”i"ge (xl_})—/l_’)A;): { U(j}_)_;i).xi if SLran.kHinge(xi’J_)i’ j/)> 0
ov 0 otherwise

The results from [Weston et al. 2011] show that the WSABIE method yields prediction
performance well ahead of the baseline methods (one-vs-rest SVM, kNN) and has good opti-
mization efficiency for very huge datasets. Specifically, their evaluation was performed on
two image data sets, consisting of 2.5 and 9.9 million images respectively. The images were
annotated with tags from a set of 15,952 and 109,444 different tags respectively, demon-
strating the successful dimensionality-reduction of very high-dimensional and noisy input
label spaces. We perform our own evaluation of the WSABIE method in chapter 3.3.

3.2 Our Adaptations

So far, we have looked at a few base line methods (chapters 3.1.1 and 3.1.2) and have intro-
duced the learning approach of [Weston et al. 2011], which is based on optimizing a low-di-
mensional latent semantic space using stochastic gradient descent (chapter 3.1.3). We now
consider a number of optimizations and extensions to the method of [Weston et al. 2011].
First, we see how the stochastic gradient descent optimization itself can be optimized. We
then look at the option of utilizing correlations in the ground-truth label sets in order to
make the algorithm more robust for crowd-annotated data sets. Finally, we introduce the
idea of “label aliasing”, which allows us to learn non-linear classifiers without sacrificing the
option of interpreting the resulting classifier with respect to the structure of the input data.
The suggested adaptations are later evaluated empirically in chapter 3.3.

-392-

3.21 Optimizations of the Stochastic Gradient Descent

A critical parameter in gradient descent is the step size. For convex optimization problems,
certain choices for the step size can be shown to guarantees that the global optimum is
reached eventually. However such guarantees can in general not be made for non-convex
problems. Yet, if the step size is too large, the algorithm may oscillate around a local
optimum without ever reaching it. If on the other hand it is too small, it will require a lot of
iterations to get close to any optimum in the first place. For non-convex problems like the one
in the WSABIE method, small step-sizes pose the additional problem that they increase the

300 300
_ o ¥p=0.2,2=0.1 (decr.)
250 YZ08 250 YE0.1 (fixed)
o y=005
L] y:O.S
200 \\ 200
- W\ g (M
£150 / Wt x150|
¢ ol il e MM m |
' . LA Tk ot bt Btk A ot it
g 100 WW WM g 00 W M\ \/‘” ‘1“‘\“ w"“."\"‘(‘i‘IM‘xj‘}*v'ﬂm“h"W“h"\;‘l‘mlw'f‘-‘":/' lfv‘v"whll
50 50
1000 2000 3000 4000 5000 600(0 20004000 0000 80007T0000T200014000
iterations iterations

Illustration 18: Comparison of step sizes: Left: Different fixed step sizes. Right: Fixed vs.
decreasing step size. See Table 1 for details. Computed on the Google 3D Warehouse dataset
(compare 3.3.2).

chances of getting stuck in local optima. A monotonically decreasing step size such as
y,=Yoi " for some A>0 in iteration i can be used as a compromise between the two. In Illus-
tration 18, we compare the convergence behavior in the WSABIE problem with different
choices for the step size. We found that a fixed step size of 0.1 yields relatively fast conver-
gence, without sacrificing much on the optimality of the solution. A decreasing step size
yielded only marginally faster convergence in our application.

-33 -

500 iter. | 1000 iter. | 2000 iter. | 4000 iter. | 8000 iter.
Fixed y=0.05 200 190 170 150 125
Fixed y =0.1 180 170 140 110 110
Fixed y=0.2 165 145 125 120 115
Fixed y =04 160 140 130 130 125
Fixed y=0.8 170 155 150 145 145
Decreasing y,=0.05, A=0.1 |200 180 160 135 115
Decreasing y,=0.1, A=0.1 |185 160 140 120 110
Decreasing y,=0.2, A=0.1 |170 145 130 120 120
Decreasing y,=0.4, A=0.1 |160 145 140 140 140
Decreasing y,=0.8, A=0.1 |170 165 160 160 160

Table 1: Rank loss after i iterations with different step sizes. Computed on the Google 3D
Warehouse dataset (compare 3.3.2).

As an extension to the stochastic gradient descent, which picks one training observation per
iteration, we use a batched stochastic gradient descent as described in [Bottou 2003]. The
idea is to use a compromise between the expensive but more stable non-stochastic gradient
descent, and the often faster but rather unstable stochastic gradient descent. In each itera-
tion, we pick a fixed number of b€IN training observations X, ..., X, randomly. We compute
the corresponding gradients individually, and then use their mean to actually update the
classifier. In a limited quantitative evaluation on the Google 3D Warehouse dataset, we
found »=32 to yield good speed and robust convergence (compare Table 2). Larger batch
sizes converged faster initially, but remained unstable and did not fully converge during this
experiment. Note that in this experiment, we adapted the step size proportionally with the
batch size, in order to get a benefit from the increased stability of larger batches. Individu-
ally tuning the step size for a given batch size would likely have yielded better results, and
the decreasing convergence stability for »=128 indicates that proportionally increasing the
step size with the batch size might be too much. Our goal here is simply to find a reasonable
value for achieving acceptable convergence speeds, and not to perform an in-depth analysis of
the effects of different batch sizes.

-34-

30 sec 1 min 2 min 4 min 8 min
b=1 185 170 150 125 115
b=8 155 135 120 115 110
b=32 145 120 120 115 115
b=128 140 125 125 125 125

Table 2: Comparison of batch sizes: The table shows the average rank loss (smaller = better)
after a given amount of time for different batch sizes. The step size y was increased propor-
tionally with the batch size b, with y=0.003125at b=1 (y=0.1at b=32). Times were
taken on an Intel Xeon X5650 system. Computed on the Google 3D Warehouse dataset
(compare 3.3.2).

3.2.2 Utilizing Ground-Truth Label Correlation (Soft Ranking)

When using crowd-annotated data sets for training a latent semantic space, there is a
problem of having many different, but semantically equivalent labels. For example, different
objects might be labeled in different languages, such as “tree” and “baum” (German for tree).
So far, our training algorithm is unaware of such cases. While it would — given a sufficient
number of training samples — be forced to map “tree” and “baum” to similar places in the
latent space due to them being indistinguishable from each other in the descriptor space, it
would still assign an error to an object labeled with “tree” if it was classified as “baum” by
the current classifier. In effect, the algorithm would try to separate “tree” from “baum” just
as much as it would try to separate “tree” from “airplane”. This is a problem especially in
cases where the number of training samples for a specific label (e.g. for “baum”) is small, and
the training algorithm could therefore actually succeed in separating “baum” from “tree”
through over-fitting. To remedy this issue, we can utilize the correlation between labels in
the ground-truth data set. As some of the people contributing to databases such as Google
3D Warehouse want to maximize the visibility of their contributions in search results, they
tend to tag their models with a number of synonymous labels. We can make use of this infor-
mation, by calculating the correlation between labels in the ground-truth label set. Specifi-
cally, if ¥ <Y are the ground-truth label sets for the training samples x €S, we calculate for
each pair of labels y, y'€Y the following statistical values:

1
mean, : =m ZE; I(yeYy x) where /[is the indicator function
COV“""y'::m%lee;g |I(y€Y,)—mean,|(I(y'€Y)—mean,,|
cov, .
corr, 1=
oY Jcovyyycovy,vy,

We then integrate the correlation values into the loss function. For this, we add an addi-
tional weight term w to the loss:

-35 -

rank’, (x,)

Ly(x):=w(x, 7)) 2, x;

j=1
We tried two variants for adapting the weight based on label correlation:

1 wmax(xi,y):ZI—maX[O, max corr, }]
) y'ey, '

2- Wmean('xi’ -y):l_|yL Z Corr.}’:y'

y'eY,

Note that w,,,, can also reach values >1 if the average correlation is negative, while w,, .
will result in weights in | 0, 1 | and ignore negative correlations.

We evaluate this “soft ranking” approach in chapter 3.3.3.

3.2.3 Aliasing Labels to Enable Non-Linear Decision Boundaries

bfze z ;tmr}‘?ef _
bike bike,
o b;%e o] o bfﬁe, @
ocar car ocar; car,
carg e Calig S
car o car; e
fe) car o cars
car car;
bfze bﬂ?e P bfl?e 5
bite 2 bike 2 bike
bike IR pike2ke: R pikeDike:
data, not linearly introducing two aliases linear classifier

separable
Illustration 19: Label aliasing allows to learn a linear classifier for non-linearly separable
classes of data.

So far we have based the classification of an object on the ranking of the linear mapping
yTU TV x , which allows us to distinguish two labels only if they are linearly separable in
the object's descriptor x . Furthermore, we are also interested in keeping the dimensionality
of the latent space representation low, not only for computational reasons, but also to exploit
the semantic overlap between labels by means of sharing training observations between
different but semantically related labels. This kind of sharing leads to a better generaliza-
tion performance of our classifier (see our evaluation in chapter 3.3.3). On the other hand,
some less frequent or geometrically complex labels might not be well predictable in a low-di-
mensional latent space, as all available dimensions are “used up” by the more frequent domi-
nant labels. While we could increase the dimensionality of the latent space to support many
more labels, we would lose generalization performance of the already well-predicted labels.
Here, we propose a simple yet powerful solution for implicitly adapting the dimensionality
per label, which we call label aliasing. Label aliasing is based on the idea of splitting “diffi-
cult” labels into piecewise linear classification sub-tasks. At the same time we keep the
advantage of having a scalable and interpretable linear classifier.

-36 -

So far we have had a set of labels ¥ c {0, 1 }lYl . We now allow each individual label y €Y to be
represented by a number of label aliases yl, ..., y" . The number of aliases can be different
for different labels y€Y (but not smaller than one), and most labels will still be represented
by only a single alias. We denote the set of all aliases by Y“c {0,1 }‘Y 1 , and we represent
aliases just like labels as vectors with a one in exactly one component and zeros everywhere
else. While the classifier §={/ J/ has so far been a mapping from descriptors into R , We
now extend it to map into the higher-dimensional space RR"/ . While the aliases yl, ..., y"are
just different ways of representing the semantic label y (we will later slightly extent this
notion, interpreting aliases as subclasses of a common semantic concept), each alias can be
mapped to a completely different position in the latent space. We have two contradicting
goals which we now want to solve: 1. We want to improve the classification of the training
data by splitting “difficult” labels into multiple aliases. However, 2. we also want to avoid
introducing more aliases for any given label than necessary, because this can easily lead to
over-fitting. In the extreme case, we could split each label into as many aliases as there are
training samples that have this label in their ground-truth label set. This would yield perfect
training performance, but the resulting classifier would not generalize well to previously
unseen data (essentially the WSABIE classifier would degenerate into a kNN classifier with
k=1).

This problem casts two sub-problems:

1. We need to identify those “difficult” labels that require splitting. An example could be
labels such as ”old” or “sporty”, which can have vastly different geometric features
depending on the semantic context they appear in. As a consequence, such labels are

)y

typically not linearly separable from their negations (“young”, “non-sporty”).
2. We need to decide about the number and initialization of their aliases.

To address the question of which labels should be split, we use a score inspired by the
“recall” metric often used to assess information retrieval performance. We call this score the
coverage of a label. For any given label y €Y, the coverage ¢, is the number of all objects x,
classified by the currently trained classifier as having label y , divided by the total number
of such objects that have y as a label in their ground-truth labeling ¥, . Intuitively, ¢ , tells
us how many of the objects actually labeled with y are “covered” by the classifier's current
interpretation of y . Note that we have not yet defined what it means for an object x; to be
classified as having label y . In order to do so, we have to convert the ranking of all labels
produced by applying /7 J/ to X, into a binary classification, that is a set of labels predicted
by the classifier. The following gives the detailed steps of how ¢, is computed:

1. for each object x, for which y €Y ., » calculate scores, = U’ V x;

2. rank the scores and select the k top-ranked labels, where k :‘Y X,
3. if y shows up in the & top-ranked labels for x; , we say that y covers x;,

4. the overall coverage value ¢ is the number of all objects covered by y divided by the
number of all objects x; for which y€Y

-37 -

As the space of possible classifiers is significantly increased by allowing for labels to be
aliased, over-fitting becomes an important concern. To reduce the risk of over-fitting, we
partition the training data into two disjoint cross-validation sets. We use the first subset to
train the classifier, and the second one for computing coverage values.

A low coverage ¢ indicates that only a subset of the objects labeled with y are reliably
predicted. We identify labels with low coverage and introduce a configurable number of
aliases y‘) ..., y" for each of these labels y. The goal of this approach is to allow a single
label y to be mapped not only to a single, but to multiple positions in the latent space. These
aliases are now included in the general optimization scheme just as if they were distinct
labels by extending the label embedding matrix U with new randomly initialized rows. Once
aliases have been introduced, we continue training the classifier in an online fashion using a
slight modification of the previously described stochastic gradient descent algorithm.

The modification is as follows: In each iteration, we pick a training sample x; as before
(compare chapter 3.1.3). We then check for the sample X, if it has any label in its ground
truth set !, which has previously been aliased. We now assume the following model: We

assume that the aliases y', ..., y"of a label y are actually a number of distinct sub-cate-
gories of the original label (for example if the original label is “sporty”, we imagine that there

”» o« o«

are sub categories such as “sporty shoes”, “sporty car”, “sporty human” etc.). We do not know

which of the sub-categories x; actually belongs to, because the ground-truth label set ¥’ +, only

contains the original label y. We could assume that x; belongs to all of the sub-categories,
but that would make it difficult for the aliases to differentiate themselves in the latent space
(they would all converge to the same location). Also, this would effectively increase the
weight that the aliased label has during the optimization, as it would be sampled # times as
often as non-aliased labels, where 7 is the number of aliases. A slight adaptation of this
would be to assume that x; belongs to any single one of the sub-categories with equal chance.
While this would maintain the weighting of the aliased label, it would still not allow the
different aliases to converge to different locations. Additionally, none of the aliases would be
consistently correct for a given object over a number of iterations. As a consequence, the opti-
mization would try to avoid all aliases, and likely embed them into the latent space very
close to the zero position, at which point they become useless. Instead of these simple
schemes, we use a probability P(y’€Y k) which increases with the similarity J/ x,-U y’ of
y’ to X, in the latent space. The idea is that once an alias has been converged to be close to a
group of objects labeled with the corresponding label, those objects have a high chance of
actually being in the sub-category represented by this alias. Starting with randomly initial-
ized alias positions in the latent space, this has the effect that aliases “snap in” to clusters of
objects, and will be drawn more and more towards them as they get closer. Different aliases
will be assigned to different such clusters. For this to work, we assume that objects for a
certain sub-category of the original label are already close together in the latent space, and

therefore will attract their very own alias. So how exactly should we define P(y’€Y \) ? In
the simplest case, we could perform a hard “maximum likelihood” assignment. For a given X,
, we would locate the alias ;™" with the highest similarity in the latent space. We would
then define P(y™" €Y,)=1 and P (y'e Y,)=0V j#max . However, this approach leads to

artifacts due to its discontinuities with respect to varying latent space embeddings. For

-38 -

example, aliases can get stuck at the discontinuities of this function, oscillating between
being and not being the highest-similarity alias for a certain object. In general, we would like

to have P(y’éyx’) such that
L P(ijYxl)<P(yk€ Yx’) whenever IV x,;-U y/<V x,-U y"

9. P(y'eY,)20V’ > P(yer,)=I1
}’/
3. P yj € Yx,) is independent of the global linear scaling of all similarities / distances in

the latent space. This is a useful property because it eliminates the need for an addi-
tional parameter that would have to be adjusted depending on the data set and latent

space regularization used. Specifically, if we replace the similarities /' x,-U /by a
rescaled variant oV x,-BU y' =« 8 (Vx-U y".’ for scaling constants «,f>0, all

P(y'e Y,) should remain the same.

Criteria 1 can be easily fulfilled by using a monotonically increasing mapping of the simi-
larity. Criteria 2 can usually be fulfilled through renormalization. This becomes especially
easy if we first convert the similarities into distances (such that they are always positive).

For the similarity s (x;, yj VWV ox;-U yj a related distance is given by

d(x,y"):=Vs(x;, x)+s (7, y)=2s(x,,)

(construction from [Wikipedia MDS 2013]). Criteria 3 is slightly more challenging to fulfill.
For example, using normalized Gaussians of the distances would not fulfill this property.
Instead, we use the following function:

1
>l x,)" el

with the blue part serving as a normalization factor, and m> 0 determining how steeply the
probability decreases (we found m =2 to work well for our purposes). For e=0, criteria 3 is
met. The proof goes as follows:

-1

P(y'ey,):= —x(d (x,, y')"+€|

-39 -

Assume that we have distances & d,,..., xd >0 with &> 0 . Then we have to show that

1 1

*

Yy [
1<k<n | \m
[O‘dlr)

being the definition of P(y’€ Y,) with the distances &d, ..., xd, and €=0 substituted, is

the same for all choices of x>0 . We simplify:

1 1

*

S (%4

(a dk)/ﬂ
1 1

*
—m —m m dlﬂ

X 1<k<n dk i
" 1
%

Zlgkﬁn d;m o(md;n
1 1

= —m * m
Z 1<k=<n dk di

which does not depend on « anymore.

Unfortunately with e=0, P(yj ey x’) is undefined if any of the distances becomes zero, and
becomes numerically instable if very small distances are involved. Using a small € >0 avoids
these issues, and the resulting probabilities still almost fulfills criteria 3, as long as €
remains much smaller than most of the distances.

Now, having a way to stochastically estimate which alias of a given label yEY \ represents
the actual sub-category that x; belongs to, we derive a new ground-truth label set ¥, "which
contains exactly one alias for each label in the original ground-truth label set !, . The
aliases are sampled randomly based on the just defined probability distribution P (yj ey x,) .

Y x,'is then used instead of ¥ ., in the remaining parts of the current stochastic gradient
descent iteration.

In order to adaptively tune the number of aliases for each attribute throughout the optimiza-
tion, we use the following approach: First, we train the latent space with just one alias per
attribute for a certain number of iterations. Then, we calculate the coverage values of all
attributes. We pick one that has a low coverage, and introduce a fixed number of aliases (e.g.
16). The new aliases are initially embedded at random locations in the latent space. We then
run a smaller number of iterations to optimize the embedding of new alises and then re-cal-
culate the coverage values. If the newly introduced aliases contribute to the coverage of the
corresponding attribute, we keep them. If they do not contribute significantly, they get
removed. Additionally, we remove aliases that cover mostly the same set of observations as
other aliases. This usually happens when multiple aliases of an attribute get attracted to the
same cluster of observations and converge to the same position in the latent space. We then

- 40 -

repeat the last two steps — introducing and cleaning up aliases in alternating steps — with a
fixed number of gradient descent iterations between each, until all low-coverage attributes
have had a chance to introduce new aliases.

Label aliasing indirectly allows us to learn non-linear classifiers. Illustration 19 shows an
example of training data which can not be classified well by any linear classifier, but can be
fit perfectly after introducing two aliases for the labels “car” and “bike” respectively. In this
respect our method is similar to kernel methods. Kernel methods are based on the following
idea: Instead of training a classifier f': RY— {—1,1} on the descriptor space IR, the
descriptors are mapped into a different space |R” through a mapping P: R?—R”, where D
can be different from ¢ , and even be infinite. ¢ does not necessarily have to be linear, and a
linear classifier /' " RP - {—=1,1}on IR can in effect be non-linear when applied to |R? as
f'l@(x)|. The so called “kernel trick” is to avoid the mapping into IR” in the first place.
Instead, using the inner product (¢,) on R”, a kernel k :={p (), @(°)) on IR is derived. In
some cases, k can be compactly expressed and efficiently computed, even if ¢ itself is very
complex or |R” is very high dimensional. A frequently used kernel is the Gaussian kernel

—x—yl?
20°

kGauss(x’ y) =e

which — despite being efficiently computable — can be shown to correspond to a transforma-
tion into an infinite dimensional space IR” . Some learning schemes can be expressed in a
way which depends solely on calculations of inner products of the data points. By replacing
the inner product by the corresponding kernel, the potentially expensive transformation ¢
can be avoided. A variant of SVMs called Kernel SVM is frequently used. Unfortunately a
kernel SVM still requires the kernel function to be applied to all pairs of training data
samples, leading to quadratic learning costs. Our method does not suffer from this perfor-
mance hit. Our classifier remains purely linear, allowing for efficient predictions. While the
dimensionality of the prediction space is increased through the introduction of aliases, which
does effect the performance of the classifier, this increase is adaptive and only occurs for
labels of otherwise low coverage. Finally, our method also provides a nice interpretation of
the data. Label aliases are designed to correspond to geometrically distinct groups of the
corresponding label. For example, the subcategories “sporty shoe” and “sporty car” of the
label “sporty” can be detected and will be explicitly represented by our method. Kernel
methods generally do not provide an interpretable result in the same way.

3.3 Evaluation

We would like to know how well a classifier performs in predicting labels for previously
unknown observations. We will first look at available evaluation metrics, which give us a
quantitative way of comparing classifier performances. We then evaluate different configura-
tions and variations of the WSABIE method (see chapter 3.1.3) with respect to these metrics
on 3D mesh and photo data sets.

-41 -

3.3.1 Evaluation Metrics

We would like to numerically compare the quality of different classifiers. Assume that we
have a set of test observations ScIR? together with a ground-truth label sets for each of
those observations ¥ cV V' xES. The (trained) multi-class classifiers take the form
feR’— R"". In general, we want to define a metric m:(IR'— IR‘Y‘)—>IR , which — given a
classifier f* — tells us how well the predictions made by fon S match the ground truth labels
Y .. Which metric makes most sense highly depends on the requirements that we have for a

specific application. We will start with a motivational example and then introduce a few
standard metrics commonly used to assess information-retrieval methods.

A very simple metric could count how often the highest-ranked result lmax JiX) for a

<i<[y|

sample x €S is also in the associated ground-truth set ¥ _ :

=1
mtop,S,t(f)'_ |S| z I

x€S

(max fi(x))EYx)

1<i<|Y|
where / is the indicator function and we write (]’17‘32 ‘.f ',-(x))EY »to mean that the label y;

associated with the highest-ranked position in the prediction vector j:=argmax f i(x) is an
1<i<l|Y|

element of ¥ . Unfortunately this metric discards a lot of information. Clearly, a classifier
which puts the first correct label at rank two should be preferred over one which puts it at
rank 50, all other predictions being equal. For data sets with many detailed labels (e.g. adjec-
tives rather than just labels denoting disjoint object categories), different labels in the label
set of an object can describe different orthogonal attributes of the object. Only looking at the
highest-ranked result would ignore such orthogonal elements of information in the evalua-
tion of the classifier.

An obvious candidate for an evaluation metric given the WSABIE algorithm from [Weston et
al. 2011] is the rank loss with weights

lyY]-1

for the j -th rank of the prediction as defined in chapter 3.1.3. However this evaluation
metric is not commonly used, and would likely give the WSABIE method an unfair advan-
tage over other methods. [Weston et al. 2011] themselves evaluate their method by looking at
the precision metric, which we introduce next. Later, we also look at the discounted cumula-
tive gain (DCG) metric, which is similar to a rank loss, but uses a different counting and
weighting scheme.

Precision-recall plots are commonly used in information retrieval settings. The idea is to
explicitly express a trade-off between finding as many true results as possible on the one
hand, and finding as few false results as possible on the other hand. In an extreme case, an
information retrieval method might simply return all objects from the database. All true
objects will certainly be among those. However there will be a lot of false-positives as well.
The former aspect is measured by the recall, while the latter is captured by the precision. In

-49 -

the other extreme, a method might return no object at all. None of the desired objects would
be in the set, but the method would also never return a false object by mistake. Formally, the
recall is defined as

|{ relevant documents } N { retrieved documents }|
recall :=

|{ relevant documents }|
and precision as

|{ relevant documents } N { retrieved documents }|
|{ retrieved documents }|

precision :=

Similarly, when we want to assess the quality of label predictions, we can consider the
predicted labels as retrieved objects, and the initial descriptor as a query given to a retrieval
method. Given the classifier fas defined earlier, we can rank all labels in the label set Y
based on the scores computed by f (x). We can then select a subset 7, Y of “retrieved”
objects by taking just the £ highest ranked labels. The set of “relevant” objects on the other
hand is given by the associated ground-truth label set Y . This leads to the following

metrics:
‘rk N Y‘C
recall, :=——7—
o,
and
‘rkm Yx

precision, .=

with
roo= €Y|rank,(f(x))<k1
=Y) J

These metrics apply to a specific test sample x €S . To obtain a value for the whole test set
S, we take the average recall and precision values:

recall, S::i Z recall, .
‘ |S| xX€S ‘
o 1
precision S::—Z recall, .
Y |S| X€S ‘

Note that for k=1, the precision is equivalent to our earlier 71,,, 5 ,metric. In many settings,
we know approximately how many results are important, and we can take the precision for
this specific k& to compare different classifiers. If we do not want to fix k£ , we can vary k and
obtain a recall-precision curve. The recall will increase (non-strictly) monotonically with
increasing k , while the precision will decrease (non-strictly) monotonically. The area under
this curve can then be calculated to obtain a single real-valued quality measure for a multi-
-label classifier.

-43 -

An alternative way to write recall, | can be obtained by assigning a gain G_.|i|=1 whenever

the prediction at rank i is correct and Gx[i |=0 otherwise. With these specific gains, we get
k
recallk,xzz G |i]

For general gains G [i|€R", the value Z _[7] is known as the cumulated gain CG |k |.

Originally, [Jarvelin et al. 2000] defined the cumulated gain recursively. However we think
that the explicit definition given here is more intuitive to read. The specific values G _|i| can
be chosen to represent the relevance of a retrieved document or predicted label respectively
in a quantitative way. In our setting, we could for example define certain labels to be more
relevant for our specific problem than others. Or we could make use of the ground-truth
label correlation (compare chapter 3.2.2) to assign a larger-than-zero gain also to labels
which are not in Y _, but have correlated labels present in ¥ . For example, if a mesh x has
Y ={car, fast} | a prediction of the label vehicle would still provide a certain “gain” with
respect to defining the semantics of the object. For simplicity reasons and to make our
numbers easier to interpret, we do not use anything of this sort for our evaluation.

[Jarvelin et al. 2000] introduce a refinement of the cumulated gain which has the property
that — similar to the rank loss used in [Weston et al. 2010] — it assigns more weight to higher-
ranked predictions. The discounted cumulative gain is defined as
. © G i

DCG [i]:=G [1]+, Togi
The basis of the logarithm b can be used to adjust the weight distribution more or less
strongly towards high-ranked gain. Note that if 5>2, G|2]|will actually receive a higher
weight than G| 1], often making such settings undesirable. We use 5 =1 in our evaluations.
The DCG is especially useful because — similar to the area under a precision-recall curve — it
can provide a single number to assess the prediction quality without having to specify & in
advance. DCGXHY || assigns higher values to classifiers which place correct labels at higher
positions in the ranking. It is also possible to normalize the DCG through division by the
highest achievable DCG given the data. The value can be obtained by computing DCG [|Y|]
for a ranking which is ordered in decreasing order of the gains for the corresponding labels,
e.g.

¥l

DCG marx’ _1+Z log)
b

for the setting where Gx[l']zl whenever the prediction at rank i is correct and zero other-
wise.

Again, we can use an average DCG to assess the whole test set Sin a single number:

DCGg:= ZDCG (Y]]

| xeSs

-44 -

3.3.2 Data Sets

We use two different 3D mesh datasets and one photo dataset for our evaluation.

freq. label

0.18 aircraft
017 animal
0.1 airplane
0.10 furniture
0.09 human
0.09 biped

0.07 plant

0.06 vehicle
0.06 body_part
0.06 fighter_yet

Princeton Shape Benchmark

Illustration 20: The Princeton Shape Benchmark data set. Example shapes and top labels.

Our first data set is the Princeton Shape Benchmark, described in [Shilane et al. 2004]. The
Princeton Shape Benchmark is a widely used data set for evaluating mesh retrieval and clas-
sification methods. It contains a total of 1,814 individual meshes from different areas, split
into a test and a training set of 907 meshes each. Each mesh is tagged by a single label. The
labels itself are organized in a hierarchy, from more coarse (“aircraft”, “building” etc.) to very
specific (“biplane airplane”, “commercial airplane”, “multi_fuselage airplane” etc.). We make
use of this hierarchy and enrich the single-label tagging of each object with its more generic
parents to obtain sets of multiple ground-truth labels. Furthermore, we filter out labels
which have fewer than five instances in the training set (this affects some of the most
specific labels). After the filtering, 117 labels remain, with an average number of 2.4 labels
assigned to each object. The ten most frequent labels are listed in Illustration 20. We build a
512 dimensional bag of features descriptor (compare 2.1.3), based on HON descriptors with
4x4 spatial bins and 8 rotational bins (compare 2.2.1).

- 45 -

freq. label

0.10 sport

0.10 house

0.10 car

0.09 modern
0.08 computer
0.06 old

0.06 table

0.05 human
0.05 boat

0.05 skateboard

Google 3D Warehouse

Illustration 21: The Google 3D Warehouse data set. Example shapes and top labels.

Our second data set of 3D meshes was acquired by querying the Google 3D Warehouse data-
base for a number of search terms one at a time and downloading the resulting meshes
together with their tag sets. Google 3D Warehouse is a crowd-generated, public database of
3D meshes. Users can upload their own work, and assign text labels. In our experience, the
quality of both the meshes and the assigned label sets varies widely (see Illustration 11 for
an example of a bad mesh and label set). This makes learning label semantics on this data
set especially challenging. Furthermore, many of the meshes contain compositions of
multiple objects (compare Illustration 7). We downloaded a data set of 1,939 meshes, which
we split randomly into a training set of 1,155 meshes and a test set consisting of 784 meshes.

animal, balcony, bicycle, boat, bottle, cathedral, car, castle, cat, chair, computer, dog, gothic,
guitar, helicopter, house, human, insect, laptop, living room, modern, motorcycle, old, plane,
shoe, skateboard, spider, sport, sporty, streetlamp, table, traditional, tree, window

Text 1: Search terms used to build our Google 3D Warehouse dataset.

The search terms that we used to crawl the data set are listed in Text 1. As with the
Princeton Shape Benchmark, we filtered out low-frequency labels which occurred less than
10 times in the training set. 582 labels remained, with an average of 7.6 labels per mesh. The
ten most frequent labels are listed in Illustration 21. We use the same descriptor as for the
Princeton Shape Benchmark, building a 512 dimensional Bag of Word descriptor from 4x4x8
HON descriptors. Note that while many of the meshes are textured, we do not currently
make use of the textures and consider the geometry only.

- 46 -

freq. label

0.19 sky

0.17 building
0.15 car

0.14 road
0.14 tree
0.14 window
0.12 person
0.10 sidewalk
0.08 sign
0.07 trees

LabelMe

Illustration 22: The LabelMe data set. Example pictures and top labels.

For photos, we use the LabelMe dataset ([Russell et al. 2008]). Like Google 3D Warehouse,
LabelMe consists of pictures collected from a wide variety of sources. The data set as we
downloaded it consists of 37,038 images, split into a training set of 18,538 and a test set of
18,500 pictures. In LabelMe, users can select regions of a photo and assign labels to these
regions. We discard the region information, but use the set of all labels assigned to any
region within a given picture as the label set for that picture. As before, we remove labels
with a frequency of less than 10 in the training set. After filtering, we are left with 1155
labels, of which an average number of 5.0 are assigned to each image. The ten most frequent
labels are listed in Illustration 22. As a descriptor, we first compute HOG descriptors with
6x6 spatial and 16 rotational bins (compare 2.1.1). We then build a dictionary and compute a
512 dimensional bag of features descriptor (compare 2.1.3) for each image. Finally, we
append a 5x5 downsampled RGB-encoded version of the image to the Bag of Words
descriptor to encode the rough color composition of the images. The final descriptor has a
dimensionality of 587.

- 47 -

3.3.3 Learning Methods

SVM vs. WSABIE

Princetan Shape Benchmark Google 30 Warehouse LabelMe

02 03 04 05 06 07 08 08 1 11 0 01 02 03 04 0s 06 o7 08 0 01 02z 03 04 05 06 07 08 0%
recall recall recall

Illustration 23: Linear SVM versus WSABIE: The graphs show the precision-recall values
obtained with a one-versus-rest linear SVM classifier and a WSABIE classifier on the
Princeton Shape Benchmark, Google 3D Warehouse and LabelMe data sets. See Table 3 for
additional details.

We compare the label prediction results of the WSABIE method to linear SVMs trained in a
one-versus-rest scheme. For implementing the SVM we use the LIBLINEAR library ([Fan et
al. 2008]). We slightly modified the partitioning part of the one-versus-rest scheme, so it can
cope with multiple labels per object. To train an SVM to classify between the label y €Y and
the remaining labels Y —{ v} , we compose the set of training observations for the first class
by picking all objects that have y in their ground-truth label sets, and for the second (“rest”)
class by taking the remaining observations in the training set. The soft margin implementa-
tion used in LIBLINEAR is tunable through a single C parameter. We optimize C for each
data set by searching through a range of candidate values. We use 4-fold cross validation to
select the C which generates the highest precision at k=3 . The results of the experiment
are shown in Illustration 23. WSABIE was roughly equivalent to the linear SVM method on
the LabelMe data set, showed slight performance improvements on the Princeton Shape
Benchmark, and could demonstrate significant benefits over SVM on the Google 3D Ware-
house data set. Objects in the Google 3D Warehouse data set have very noisy, incomplete and
inconsistent label sets. The low-dimensional latent space and the weighted rank-based loss
function of the WSABIE method make it especially robust under such conditions.

Princeton Shape B. | Google 3D Warehouse LabelMe

p@1 P@5 DCG |p@1 P@5 DCG |p@1 P@5 DCG

Linear SVM |0.54 0.27 1.26 0.30 0.18 1.19 0.34 0.23 143

WSABIE 0.56 0.28 1.31 0.35 0.19 1.26 0.34 0.23 1.44

Table 3: Linear SVM versus WSABIE: Precision and DCG values. p@1 | p@5 denote the
precision at the top ranked prediction and over the five top ranked predictions respectively.
Also compare Illustration 23.

- 48 -

Simplified Variants of WSABIE
e LabelMe

Princeton Shape Benchmark Goagle 30 Warehous

6
03
0s 03
025 025
04
LLLLLLLL

7 03 a] "
z 2 o1s wWSABIE

02

o 0 o
02 03 04 05 08 07 08 LE] 1 1 0 01 02 03 04 05 08 07 08 o o1 02 03 04 05
recall recall recall

Illustration 24: Simplified variants of WSABIE: We try different simplifications of its loss
function. The graphs show the precision-recall plots for those variants on the Princeton Shape
Benchmark, Google 3D Warehouse and LabelMe data sets. See Table 4 for additional details.

06 07 08 08

In order to measure the benefit of different design choices made in the WSABIE method, we
evaluate simplified variants of it. Remember the original loss

l_é"’(xf)—i_(p ”<xi)+
Ll*ankHinge(xi>::Ll<xi) Z | Vi 1 ¥ |
ver—ipy rank,(®(x;))

from the WSABIE method (compare chapter 3.1.3).

First, we remove all rank-based parts of the loss, to obtain a regular hinge loss (“Hinge”):

Lhmge(x,.) = Z ‘1 —<1)yi(xl.)-|-€l5y,(xi)|+
y'EY—{y}
The resulting learning method is close to the objective of a linear SVM, but still uses a low-
dimensional latent space as an intermediate representation. We also evaluate a variant of
the rank loss where violations have the same weight independent of the rank that they occur
at (“Lin. Loss”). This is equivalent to using L, as defined earlier in 3.1.3 in the loss func-

tion:

1=, (x,)+P,(x,)

Vi

+

lengg(X[)._le(Xi)y'eyz“{y,} rank;[(dﬂxl—))
IMlustration 24 shows the results of the experiment. The label prediction performance on all
tested data sets showed a significant improvement when changing from a the pure hinge loss
L), to the linear rank based loss L, - Results on both the Princeton Shape Benchmark
as well as on Google 3D Warehouse improved slightly more with the introduction of the
decreasingly weighted ranks used in the WSABIE method (L,). On LabelMe, the
performance improvement of this change was even more dramatic. A possible explanation for
the increased change on the LabelMe data set might be its large number of labels, which

hinge

lead to an increased difference between the values of L, ;.. and L, ... - The experiment
shows that the design choices made in the design of the WSABIE loss function do indeed
provide measurable performance improvements on the tested data sets.

-49 -

Princeton Shape B. | Google 3D Warehouse LabelMe

p@1 P@5 DCG |p@1 P@5 DCG |p@1 P@5 DCG

Hinge Loss | 0.49 0.26 1.20 0.28 0.17 1.16 0.22 0.17 1.22

Lin. R. Loss |0.53 0.27 1.29 0.28 0.18 1.23 0.26 0.18 1.26

WSABIE 0.56 0.28 1.31 0.30 0.19 1.25 0.32 0.21 1.35

Table 4: Simplified variants of WSABIE: Precision and DCG values. p@1 | p@5 denote the
precision at the top ranked prediction and over the five top ranked predictions respectively.
Also compare Illustration 24.

Effect of the Regularization Parameter C

Precision at k=1 DCG
06 15
055 s " @,
. 14 .
. . &
05 . o, .m A - &
13 [] ‘.

045 .
1 E 'y . 'B L g A ®PSE
® 04 o 12 + v ¥ \Narehouse
g 2 ® & Labellle
ol
§ 038 . .
5 R e N . A .

03 P - *

. ¢ L J 4 1 v
028 . H
02 09
05 1 15 2 25 3 as 1 05 1 15 2 25 3 35 4
[Cc

Illustration 25: Effect of the regularization parameter C on the label prediction performance
of the WSABIE method.

We evaluate the two major parameters of the WSABIE method. First, there is the C regular-
ization parameter which limits the magnitude of the column vectors of the mappings /' and
U, and thereby indirectly defines the relative size of the margin of the loss function (see
chapter 3.1.3 for details). Illustration 25 shows the results of our experiment. All remaining
parameters were kept fixed throughout this experiment. Specifically we used latent space
dimensions D =32 for the Princeton Shape Benchmark and D =128 for the other data sets.
We assessed the label prediction performance against the test sets of the Princeton Shape
Benchmark, our Google 3D Warehouse data set, and the LabelMe data set. The parameter C
was varied in steps of 0.5 in a range between 1 and 3 (3.5 in the case of LabelMe). In general,
larger values of C lead to smaller training risks (not shown here). However when using the
test sets, it becomes evident that this reduction in the training risk after some point can be
contributed to over-fitting of the training data. The peak DCG was obtained at C=2.0 for
the Princeton Shape Benchmark and the Google 3D Warehouse data set, and at C=3.0 for
the LabelMe data set.

Similarly, we performed an experiment were the latent space dimension D was varied
between values of 16 and 512. Because 512 is also the dimensionality of the Bag of Features
descriptors we use, higher values cannot actually increase the rank of the classifier =)/
any further. This experiment serves two main purposes: First, we want to test our hypothesis

-50 -

from chapter 3.1.3 that the label space of our data sets can indeed be reduced to a lower-di-
mensional structure without losing much information. Second, the choice of the parameter
D involves an important compromise between two contradicting goals, and we would like to
find out what its ideal value is for the given data: On the one hand, a small dimensionality of
the latent space comes with a loss of information when mapping the descriptor of a given
test object into it, and we would like to preserve as much information as possible. On the
other hand, a high-dimensional latent space increases the degrees of freedom during the
optimization, and learning a well-generalizing classifier from the limited amount of available
training data becomes increasingly difficult.

The results of the experiment are shown in Illustration 26. All data sets obtained a local
maximum in the DCG as well as precision at k=1 at a relatively low value of D , either
D =32 for the Princeton Shape Benchmark and LabelMe or D =64 for the Google 3D Ware-
house data set. When increasing the dimensionality of the latent space further, the same
DCG as at D=321is reached again for D=512 in the case of the Princeton Shape Bench-
mark. This is not the case for the other two data sets, even though for the Google 3D Ware-
house data set, the DCG at D =512 gets very close to the one obtained at D =64 . Two things
can be concluded from this experiment: First, a relatively low dimensional space is sufficient
to obtain good overall label prediction results. Second, enforcing the sharing of axes in the
latent space through a low dimensionality can even be beneficial to prediction performance.
In our experiment, this was the case for the LabelMe data set and the Google 3D Warehouse
data set, both of which have a high number of 1labels of which many are semantically similar.

Effect of Latent Space Dimensionality

Precision at k=1 DCG
08 14
oss | gy L a &
] - @
135 el
05 ',
.
- Y .

= 045 L R RS R U T
L 1-3! I..‘.-l' - Y=
T4 @ ¥ \Warehouse
5 ’ =3 v 8 Labelie
S 035 BRE v v e
Z ". e N =" -
= B S Y A 4 '

03 !‘ A W o L .

'Y . . ¥ Y 12 ¥
025
0.2 115
0 100 200 300 400 500 00 0 100 200 300 400 500 00
o] o]

Illustration 26: Effect of the latent space dimensionality D on the label prediction perfor-
mance of the WSABIE method.

In chapter 3.2.2 we introduced what we called the “soft ranking” modification to the
WSABIE learning scheme. We utilized correlations between labels in the ground-truth label
sets to fine-tune the loss function. Table 5 shows how the two proposed soft ranking schemes
compare to the plain “hard ranking” with constant weights. The overall results were incon-
clusive. Both soft ranking schemes decrease the label prediction performance on both the
LabelMe data set and on the Princeton Shape Benchmark, with the w
more detrimental one. Results on Google 3D Warehouse showed an opposite trend, with w
slightly above plain WSABIE with respect to both DCG and precision at k=1. w
improved the precision at k=1 for this data set, while decreasing the DCG. In our experi-

scheme being the

max
max

mean

-51-

ence, Google 3D Warehouse has the most inconsistent label sets of the three data sets, which
might suggest that soft ranking is effective in such scenarios, while having a negative impact
in cases where the labels are relatively clean and consistent.

Princeton Shape B. | Google 3D Warehouse LabelMe

p@1 P@5 DCG |p@1 P@5 DCG |p@1 P@5 DCG

plain 0.56 0.28 1.31 0.30 0.19 1.25 0.32 0.21 1.35

w 0.52 0.28 1.29 0.34 0.19 1.26 0.26 0.18 1.22

max

0.54 0.28 1.30 0.32 0.18 1.21 0.29 0.20 1.30

mean

Table 5: Evaluation of ranking schemes that utilize ground-truth label correlation, as
proposed in chapter 3.2.2.

We could verify that our label aliasing extension (compare chapter 3.2.3) works on an
extremely simple artificially created data set not unlike the one shown in Illustration 19.
The artificial data set had four labels, with the descriptors of the corresponding training
samples designed such that the labels could not be linearly separated from each other. We
also measured the effect of the method on the label prediction performance on the Princeton
Shape Benchmark, the Google 3D Warehouse and the LabelMe data sets. Unfortunately we
could not observe any significant improvements in the prediction performance. Visualiza-
tions of the latent space while the optimization was running indicate that freshly introduced
aliases could not converge to different clusters of associated training samples. They often
collapsed all into the same location, despite the precautions we took to avoid this behavior.
In other cases, the aliases could not converge to useful unique locations within a reasonable
number of iterations. The complex and non-linear interactions between the embedding of
training observations and the different labels makes it difficult to fully understand the
effects at work analytically. While it is possible that the failure of the aliasing method in our
experiments was merely due to incorrectly adjusted parameters, the increased optimization
time required with this method did not allow us to exhaustively probe a wide range of config-
urations within the scope of this thesis.

-52-

gothic gultar
gothic
windos
!
|

traditional

ramp
shairs
shoe

windew it
woot qultar
glass

3d car

=mall N wee

fres 3 spidir
iy

&hair stadlum
helicopter
ble

big
car
ears
eool

black
hox
classic

pz
laptop

camputer
home

old Peruge
planc woad
render butfe

racm

wehicle

ground old
vender plcture
Ll sereen
sgrarl stand
ranspol Ielavision
wehicle ™
white
woid
d <ar lamp house dog madel chair old
car sport life residence: sport old
cool poesche Iing housc waod
fast . Iiving roam wooden
oy T g
Sparls >

4

L

blcycle architceture bottle tree architacture dog shoe
black Cemputr landscapa family human
chait laptop 3 tree hame splder
deslgn house
furniturs raditional Tt
inleriar —
kitchem A .
modern » E
brallle bottle autn spor ear Eport castia nelicopter castie bottle
Wi hattle bt sport car medicval ehataboard old
casl hesl ship Sl castle
-
5
car car apple modern windouw apartment nouze
coo| sport computer kitihen woed architecture modern
design 3 pider ockerr bathroom ood
old pearoom [

Gasa
cuclina
garden
haus
home
house
khchen
light

Illustration 27: Label predictions on randomly selected samples from the Google 3D Ware-
house data set: Blue are the ground-truth labels, red the top three predictions of the WSABIE
algorithm in order of their ranking. The a bag of HOC descriptors was used in this experi-

ment. While some predictions are close to perfect (for example 3™ from top, 1* from left), others

demonstrate failure cases of the method. For example the chair 4™ from top, 2" from left was

classified as “bottle, computer, laptop”. We believe that the failure in this case can be attrib-

uted to two main factors: 1. our bag of features descriptors do not encode the global shape of
the object well. Individual parts of the chair do in fact resemble the screen and keyboard of a
laptop computer. 2. Labels which often occur in combination with other objects in the same

mesh are difficult to learn and require a very high number of training samples. We found that
both “chair” and “bottle” often occur in scenes composed of different kinds of furniture and
different variations of bottles (including rectangular ones) respectively in this data set.

-53 -

3.3.4 Descriptors

We have not yet performed any evaluation of the performance of the descriptors introduced
in chapter 2. We omitted an evaluation at that point, because the performance of a given
descriptor can only be evaluated in a meaningful way if the objective of its application is
known. We have now specified a concrete application for the descriptors (learning and
predicting attributes), as well as a metric for evaluating their performance in this applica-
tion.

While there are many descriptors available for representing 2D image data, we have only
introduced and implemented the HOG descriptor. The HOG descriptor in combination with a
bag of features dictionary has been used successfully for the given task by others (e.g. in
[Weston et al. 2011]). An application of the WSABIE method to 3D shapes has — to the best of
our knowledge — not been done before though. Here, we compare only 3D shape descriptors
with respect to their performance in the WSABIE learning scheme and under a linear SVM
as a reference (again in a one-vs-rest scheme).

We evaluate the HON (- 2.2.1), HOC (- 2.2.1) and Harmonic Shape Descriptor (HSD -
2.1.2) with respect to their retrieval performance on the Google 3D Warehouse and the
Princeton Shape Benchmark data sets. The descriptors were compute for local patches of the
shapes and a 512 dimensional bag of features descriptor was built on top. For each
descriptor, we have tried different regularization parameters C of the WSABIE method and
show the results for the best one (with respect to the obtained DCG).

Descriptor Performance, Google 3D \Warehouse Descriptor Performance, Google 3D Warehouse
WSABIE SWVM
0.35 035
03 03
0.25 025
= 02 ®HSD = 02 WHSD
= = HON = *HON
g o1s wHOC 2 ois wHOC
2 z
04 a1
0.05 0.05
] 0
0 0.4 02 0.3 04 05 06 o 01 0z 03 04 05 0§
recall recall
Descriptor Performance, Princeton Shape Benchmark Descriptor Performance, Princeton Shape Benchmark
WSABIE Sy
08 06
0s 05
04 04
®HsD P
03 “-HON 03 HON

wHOC wHOC

precision
precision

02 02

04 01

01 02 03 04 05 0.6 o7 08 08 1 11 01 02 0.3 04 0.5 06 07 08 08 1 14
recall recall

Illustration 28: Descriptor comparison: precision [recall curve (excerpt) on the Google 3D
Warehouse and Princeton Shape Benchmark data sets. Also compare Table 6.

-54 -

In this experiment, we configured WSABIE to use a 32 dimensional latent space in the case
of the Princeton Shape Benchmark, and a 128 dimensional latent space for Google 3D Ware-
house.

INlustration 28 compares the precision/recall curves achieved with the different descriptors.
Both HOC and HON descriptors consistently outperformed the harmonic shape descriptor in
our experiment. The normal-based HON descriptor was generally superior to the curvature-
based HOC on the Princeton Shape Benchmark data set, while both achieved similar overall
performance on Google 3D Warehouse (with a slightly higher precision at 1 for HOC and
better precision values at k> 1 for HON when using the WSABIE method). We believe that
the larger difference between HON and HOC descriptors on the Princeton Shape Benchmark
compared to their difference on the Google 3D Warehouse data set can be attributed to the
different shape composition of those data sets. The HOC descriptor generally expresses
sharp edges and corners very efficiently, while we expect the HON descriptor to achieve
better results where those are less dominant. The Princeton Shape Benchmark contains
many models with smooth and round surfaces. According to the DCG values (compare
Table 6), the HON descriptor turns out to have the best overall performance in all tested

scenarios.
Princeton Shape B. Google 3D Warehouse

WSABIE p@1 P@5 DCG p@1 P@5 DCG
HSD 0.47 0.25 1.18 0.28 0.15 1.03
HON 0.56 0.28 1.31 0.30 0.19 1.25
HOC 0.54 0.27 1.29 0.32 0.18 1.18

SVM p@1 P@5 DCG p@1 P@5 DCG
HSD 0.45 0.24 1.16 0.25 0.16 1.07
HON 0.54 0.27 1.26 0.30 0.18 1.19
HOC 0.53 0.26 1.22 0.30 0.18 1.18

Table 6: Descriptor comparison: Precision and DCG values on the Google 3D Warehouse and
Princeton Shape Benchmark data sets. Also compare Illustration 28.

-55 -

-56 -

4 Multi-Modal Semantics

tagged photos tagged 3D meshes tagged scribbles
) = D

Learning

Describe this

Are Find
these = meshes {'L‘
related - s like this

Illustration 29: We are given a set of tagged training objects from different modalities, such as
photos, 3D meshes and scribbles. We use machine learning in order to learn a measure of
semantic similarity between objects from different modalities. Our goal is to answer queries
regarding the semantic relation between objects from different modalities.

Assume that we are given input data from different modalities 71, ..., m, . For example these
might be 3D meshes, 2D photographs, sound samples, music, videos or text. We denote the
set of input observations from modality 72, by Sm, . Our goal is to establish semantic corre-
spondences between samples from different modalities. We define semantic correspondences
through a semantic similarity measure s, mapping from pairs of observations to a positive
real number. The higher this number, the more semantically similar the observations in the
given pair are. In the uni-modal case, we have already seen how we can establish correspon-

- 57 -

dence between 3D meshes or 2D photos on the one, and text labels on the other side (see
chapter 3). This uni-modal case can be thought of as a special case of establishing a semantic
similarity measure s, where the set of labels would be interpreted as a second modality. In
contrast, in the full multi-modal case, s can not only be applied to a label and an observation
from a single given modality, but also to observations from two different modalities. We want

to learn s given the training observations S, , ..., S, .

In order to approximate the a multi-modal semantic similarity measure s, we need addi-
tional information which links the semantics of the different modalities together. In addition
— if we also want s to generalize to data samples which are not part of the initial training set
— we also must assume a prior on how semantic similarity behaves within a given modality.

Previously we have seen how images and 3D meshes can be represented as descriptors
(compare chapter 2). However different descriptors have to be used for different modalities,
and they will behave very differently. In many cases, it can make sense to use descriptors of
different dimensionalities for the different modalities. We say that every observation of
modality 72, is represented by a descriptor y €|R?, where d;is the dimensionality of the

descriptors used for modality 7, .

As in the uni-modal case, we assume that within a single modality, observations that have
similar descriptors also are semantically similar. As for establishing inter-modal correspon-
dences, we have essentially two choices: First, for specific descriptors, we might know that
descriptors between different modalities for a specific semantic entity are statistically depen-
dent in a well-defined, sufficiently simple and sufficiently generic way. If we can define this
dependence in a stochastic manner, we can use it as a stochastic prior on our multi-modal
semantic similarity measure. A simple example would be descriptors for visual modalities
(e.g. video, photos and textured 3D meshes), that all contain information about the color of
the described object. If we look at a textured 3D mesh on the one and a photo on the other
hand, we would find that meshes that have the same kinds of colors as a set of photos are
statistically more likely to also be semantically close, simply because they are more likely to
depict the same underlying object. Another example would be video with an audio channel,
where we could attempt to learn multi-modal semantics by correlating audio and video data.
The descriptors can be made to contain a “time” coordinate, and things that are audible in
the audio channel at a specific time are more likely to be semantically related with image
data in the video channel from the same or a similar time.

Unfortunately, in our setting it is in not always trivial to find such priors, and those that can
be found (e.g. the one with color for visual modalities) are often not discriminative enough to
allow establishing cross-modal semantic correspondences from these priors alone. We there-
fore pursue a different approach, which can be thought of as converting the initial unsuper-
vised into a semi-supervised learning problem: We assume that between certain pairs of
modalities, semantic correspondences are known. The goal is then to extrapolate, or interpo-
late respectively, from this knowledge such that a) we can also establish semantic correspon-
dences between modalities where correspondences are not known beforehand, and b) we can
apply the semantic similarity measure s to observations for which no ground-truth corre-
spondences are given at all. In practice, we turn to text labels which are widely available for
data from different modalities. Many openly accessible databases of visual and/or auditory

-58 -

data use user-provided labels (“tags”) to enable searching and navigating those databases.
While the semantic meaning of an object is generally a subjective concept, we assume that
those labels capture relevant aspects of the semantic meaning.

In this chapter, we look at how we can learn a similarity measure which can

1. tell us the similarity between observations within a certain modality, even if the
exact observations are not known at the time of training

2. tell us the similarity between observations from different modalities

We first have a brief look at related methods in chapter 4.1, and then propose our own exten-
sion of the WSABIE method (compare 3.1.3) to support multiple modalities in chapter 4.2.
Finally, we introduce and evaluate an application that makes use of inter-modal similarities
in chapter 4.2.2.

4.1 Related Work

Querying 2D image as well as 3D shape databases by hand-drawn scribbles has been
addressed in a number of previous papers. [Chan et al. 1997] built on a common descrip-
tor-based representation between images and scribbles in order to allow querying an image
database through hand-drawn sketches. Recently, [Eitz et al. 2012] have implemented
sketch-based retrieval for 3D shapes. Their approach is based on rendering line-drawings of
the shapes in the 3D shape database from a variety of view-points, thereby allowing descrip-
tor-based methods from the area of image retrieval to be applied to 3D data. Since 2012, the
SHREC competitions also have a discipline on sketch-based 3D shape retrieval (compare [Li
et al. SKETCH 2012]).

More generally, [Yang et al. 2001] proposed a system to query databases of text, images,
video and audio data by either keywords or query objects. They use two internal retrieval
techniques 1. retrieval by keyword and 2. retrieval through descriptor matching. Descriptor
matching can only be performed within one modality, but keywords can be queried across
multiple modalities. Both techniques are combined in their system in the sense that initial
results of a descriptor-based (that is non-keyword) query are used to initiate related
keyword-based sub-queries and vice-versa. The results of the initial query can then be
combined with the results of those sub-queries. Thanks to this technique, cross-modal
descriptor queries are possible because of the automatically generated keyword-based sub-
queries. While no initial learning is performed in their approach, user feedback can be incor-
porated into future query results.

-59 -

4.2 Our Approach

To the best of our knowledge, previous methods for multi-modal retrieval were either based
on common descriptors (which can not always be established), or on first performing a
transfer from the query modality into a textual label (keyword) domain and then back into
the target modality. Finer-grained semantic properties can be lost in this transformation,
and aspects such as the fact that certain labels frequently occur together and can therefore
be regarded as related concepts are usually not taken into account. We propose a method
which builds on an embedding of different modalities into a common semantic space, on
which we define a similarity measure. Shared labels are utilized to initialize this space, and
as in [Weston et al. 2011] we explicitly represent the semantic relationship between different
labels by encouraging them to share dimensions in the space.

4.21 Multi-Modal WSABIE

Y cIR” latent space

Illustration 30: In contrast to the uni-modal case (compare Illustration 17), we embed
multiple modalities, here 3D shapes X, and photographs X ,, into the same latent space.
While labels are embedded through a single linear mapping U, each modality is embedded
by a different mapping V...,V ,. Bases on an illustration by M. Wand and R. Herzog.

The method of [Weston et al. 2011] provides a good starting point because it partially decou-
ples semantics — represented by positions in an explicit latent semantic space — from the
representation of the observations. As explained in chapter 3.1.3, the mapping from a
descriptor x €IR? into the D -dimensional semantic space is performed through a linear
transformation J €|R”*¢ . We extend the method to support observations from a number of
different modalities 72, ..., m, , where each modality can use different descriptors. The
descriptor for a sample from Sm, is given by x€[R? . Note that descriptors from different
modalities can have different dimensionalities. To establish a multi-modal semantic model,

-60 -

we want to map all the different descriptors into one common semantic space IR” . To do this,
we train a different linear mapping VZEIRDXd’ for each modality. The label set Y together

with its mapping U €R"*? on the other hand is shared across all modalities, to provide a
“semantic glue” between the otherwise unrelated descriptors. Once all mappings have been

trained, the multi-modal semantic similarity measure s: U R“>Ris given by

s(x,x"):=V,x-V,;x" if x from modality m; and x' from modality m;

We extend the stochastic gradient optimization scheme (compare chapter 3.1.3) as follows: In
each iteration, we randomly pick one modality 77, . Then, gradients for }; and the label
mapping U are calculated just as in the uni-modal case and the respective matrices are
updated. The probability at which each modality is chosen can be used to prioritize the preci-
sion of certain modalities over others in the resulting semantic space. In our experiments, we
use uniform probabilities.

4.2.2 Application: A Multi-Modal Semantic Explorer

B @l SN N SR LR = B
i1 R e e e
o Il B e =] g - tiu% 5
A [)‘&“ &\ = |- |§ & [[

B | (O b]]]

T EwBELS R - e) ! I,- ! |?," i &

3
L
E

[

Q: panda photo Q: car mesh Q: human scribble

Illustration 31: Screenshots from the multi-modal semantic explorer. The query object is in the
center. The nearest neighbors in the semantic space from different modalities are spread
around it. The size of the neighbors decreases with increasing distance from the query.

We implement an interactive tool to explore a multi-modal database of objects. The user
starts the exploration by providing an initial query. This query can be given either as a label
entered through the keyboard, or in the form of an image file. First, the query is converted
into the corresponding descriptor. The semantic explorer application then maps the query
into a previously learned semantic space, and looks for the k nearest neighbors in that space
from each modality with respect to the semantic similarity measure s defined above. The
neighbors are visualized around the query and presented to the user. The user can then
refine and/or change their query by clicking on one of the results, thereby making the result
object the new query object. This step can be repeated.

-61-

The option to query the database by an image query allows the user to take a photo with a
smart phone or other digital camera and query the database for semantically related objects.
For example, a user might look for a 3D mesh related to an object from the real world. Or
they might be interested in a semantically similar photograph of higher quality than the
query.

Because mapping descriptors into the latent semantic space is very efficient with the linear
mappings obtained from the multi-modal WSABIE approach, we do not have to perform any
pre-computation other than training those mappings. On our datasets consisting of up to
roughly 20,000 objects, simple linear-time sequential filtering without any index structures
was sufficient for real-time exploration of the data set without noticeable delays.

4.3 Evaluation

We evaluate the multi-modal extension of WSABIE on two multi-modal data sets:

1. 3D shapes from the Princeton Shape Benchmark together with our own scribbles
data set (see below)

2. 3D shapes from the Google 3D Warehouse data set together with photographs from
the LabelMe data set

For the Princeton Shape Benchmark and Google 3D Warehouse data set, we use the same
descriptors as explained previously in chapter 3.3.2.

Our Scribbles data set contains 374 hand-drawn scribbles, stored as black and white images.
Each scribble appears twice in the data set, once in its original variant, and once mirrored
along the x axis. The data set was built in-group specifically for the purpose of evaluating
multi-modal learning. We assigned an average of 1.8 labels out of a label set of 24 labels to
each scribble. The labels themselves are inspired by the labels used in the Princeton Shape
Benchmark, and are of medium granularity (such as “human”, “car”, “guitar”). While we use
the same HOG descriptor as for LabelMe to avoid having to implement an additional
descriptor, we optimize parameters of the descriptor based on the information given in [Eitz
et al. 2012]. Because lines in scribbles are often not completely straight nor exact, we use a
reduced number of 4x4 spatial and 8 rotational bins for the HOG descriptor. Based on the

HOG descriptor, we build a single 256 dimensional Bag of Words descriptor for each scribble.

As a first experiment, we test how our multi-modal semantic explorer works for the use case
of exploring a given multi-modal data set. For this, we train a latent semantic space using
the multi-modal WSABIE extension on the data sets introduced above. We query by meshes,
photographs, scribbles and labels. The nearest neighbors in the semantic space are visual-
ized and can be evaluated subjectively. The results on the Princeton Shape Benchmark /
scribbles data set are shown in Illustrations 32, 33 and 34. We found the overall results to be
convincing. Failure cases are marked in the result illustrations.

-62 -

= B S e = H»ﬁ
= el B - D]
| ‘g @’5 4,;\;,,?

BEF’FL
i ot
E
==
D
I
=

e S
-] - -
e] =
EHIEF.

E:

F

=
=

ﬂ
A a

7@[@3@3 [

= [
4
E
3 =
E

b

1
BT T e

]

- j@@@ o s @ o]
w\ETWll T HREEE| BB e
@ = e @ & S R TR sl R A R
N/
Q: car scribble Q: guitar scribble””\ Q: house scribble
400 [=] [i [f] 1 [A]] e
v WIEEE o) |r v @@ E
ﬂﬁmfﬁﬂufw ﬂ;y\.@\

WIEEEEE

Q: human scribble Q: table scribble

Illustration 32: Multi-modal query results on the Princeton Shape Benchmark and scribble

Q: tree scribble

data sets. A representative selection is shown. Query by scribble. The query object is in the

center. The nearest neighbors in the semantic space from different modalities are spread

around it. The size of the neighbors decreases with increasing distance from the query. In the
case of the guitar scribble, our method retrieves both meshes of guitars (correctly) as well as

humans (incorrectly). We believe that this is due to the geometric similarities between those

classes and the limited power of our descriptor to successfully discriminate between both.

-63 -

N = = @ M Bk
2 H.DB. o e B][] | e
= @lm B = AN F]| |
B e ks s =
FHER A 0= BT (e
\/
Q: car mesh Q: guitar mesh /" \ Q: house mesh

‘ i TRE] [w] [T @ (] & 1 (€) 7 -] & =
T SEHID | e SOFENE) BT .

@

TEE@E@\ N ERER:
RS RN e DU R A
ml@mﬂﬂmm.mmgﬁwgmm.gﬂu
FOERDEMN T DEE =@ FEE TS

Q: human mesh Q: table mesh Q: tree mesh

Illustration 33: Multi-modal query results on the Princeton Shape Benchmark and scribble
data sets. A representative selection is shown. Query by mesh. As in the case of a scribble
query, the results for the guitar mesh query contain many false positives.

-64 -

= e e b &L e A (1)] e
S e e [] @ 2| | A) 2 | 8]) e
=a =R A= aEREE =6
== =R v SRS S e
< [f =] =] 0] | e ¥
= od e (@ M [e] = (= 2] [~ [=] [] |@ &

Q: car label Q: guitar label

SO0 | HmEREe i
d EDDW | | & =]] = |
[r @mn ¢ Jm [t ﬂ@ m &

7 m.ﬂ.ﬂ aal I R R 4
& 4JII|lI[K]II T B lIIIIIl[j]Eﬂ M| =]| A
LANCARNT SO E AR E T Y] I [@\ﬁ@ﬂ«\h«eLﬁﬁl

Illustration 34: Multi-modal query results on the Princeton Shape Benchmark and scribble
data sets. A representative selection is shown. Query by label.

Q: human label

Q: table label

-65 -

Q: tree label

~ - E®EF

B

B e Fle) =
z W= el | = =]]
2 B e |1 o[- e EEmEHEB
- = w -] B m| |&
CRS == R M BT = E
el B O~ B (e T e e W = =

Q: beach photo Q: building photo Q: car photo

M - e F e B
« P - e
D@EDD = i =
s - - W r L FIRR =
a NN - HJEEHBH EBDEIIE
HEE M) EEN =B8N - E e E ¥ E g
Q: computer photo Q: face photo >< Q: motorcycle photo

B - L m ()] o e - SRl
m -) w | e] o) e |- [e

| | w - e | - = s

- l@l @) = =B [~ =
[~ o] W

n

Q: panda photo

Q: road photo

Q: sky photo

Illustration 35: Multi-modal query results on the Google 3D Warehouse and LabelMe data

sets. A representative selection is shown. Query by photo. The query object is in the center. The
nearest neighbors in the semantic space from different modalities are spread around it. The
size of the neighbors decreases with increasing distance from the query. Note the failure case

of the face query. The beach photo query illustrates how semantically related concepts are

mapped close to each other in the latent space, showing meshes of boats. Similar effects can be

observed in for the road and motorcycle photo queries.

- 66 -

e -]] [a = ~aH-dEBe=
olid=1 SIS R RS - [T
2] - » =
- *@ Emﬂ . : =
T EEEEIREEE o
el H Wi FESHEHNHE =

\/

Q: boat mesh Q: bottle mesh /" \ Q: car mesh

- R e ow (] - R
CEEIFOE e e e e E
w - P =] 1 & 3
= Q- [~ = i
EXBE= @ , w:
e e e B @ES [Eﬂl}@ L EVINEaE N

Q: chair mesh Q: door mesh Q: laptop mesh

B -] e [@ = /- =4[] . o e
@MID.IE o [][] (=] o WBWHWWJ
= | -3 | |=F - LIt E=E e 1
- s [l i ¢ g |- e
- B e - | W - NEy =
B EE e M|y EELE NEWEEP R
Q: motorcycle mesh Q: Porsche mesh Q: table mesh

Illustration 36: Multi-modal query results on the Google 3D Warehouse and LabelMe data
sets. A representative selection is shown. Query by mesh. The failure case of the bottle query
shows the limits of the bag of features descriptor. The descriptor does not capture the global
shape of the bottle well, but is based on local pieces of it that have little discriminative power.

-67 -

=N NN ==
m s | [l v = H =~ =
= [] - E = == m D -] =
Sa== [FEEC= S
= EEEREEEr 1= FIES 5=
- o e e |FE AR 0= -
\/
Q: car label Q: cool label /" \ Q: helicopter label

| SRRE [s = & =
S Wl] e e (] -
== GrIrEra~T e
ol | e W e 8] s
UL SRS R R
e el s | | Ee o e

Q: luxury label Q: park label

=Rl N A = RS .
v me e][o] | E.m. VG -
N 1 - Tt we | | E fres D . e
= j[][@[ﬂ # @fﬁ@l u| |m [
= ot o[-)= || e ()] e
Wﬁf[gg\l/%ﬁ@maﬁﬁ IWIEE@@

Q: person label”” N Q: road label Q: spider label

Illustration 37: Multi-modal query results on the Google 3D Warehouse and LabelMe data
sets. A representative selection is shown. Query by label. Our method has difficulties in
covering abstract attributes such as “cool”, as they cannot easily be associated with character-
istic visual features. While the query by label “person” resulted in many shapes of human
beings, the retrieved photographs often do not contain any people.

We also tested multi-modal querying with photos taken with a digital camera that were not
part of the training data set. Some results are shown in Illustration 38. We found that the
retrieval worked well as long as there was enough training data similar to the query. The
method frequently failed for query photos which had no or few globally close matches in the
training data, despite containing known objects in some of their parts.

- 68 -

-] -
-1 = - .
AR w =

E =
==
K‘!Q ‘
“IiE
| I

v ok
==z
‘ =28
[
T g i
i H
& 5|0

[+]
o
E
[
(@]
K
B

o NIV £
0 (1=
ng@ a
o™ o 1
A [Bl &
><§gil

Illustration 38: Multi-modal query results on the Google 3D Warehouse and LabelMe data
sets. Examples of querying by photos not in the data set. Note the following (partial) failure
cases: Our method failed to recognize the fact that the picture on the bottom right was taken
on a boat rather than a building. In the marked failure case (left bottom), the query results
had little in common with the query. We believe that this is due to the fact that while the
training data did contain some photos of animals, those were shot from different perspectives
and in different surroundings than our query image.

Evaluating the quality of multi-modal query results quantitatively is difficult. Because
semantic similarity is a subjective concept, the correctness of returned results cannot be
easily assessed. There is the option of comparing a query object to the result objects by
comparing the respective associated ground-truth label sets. This metric only works if the
data sets from different modalities are labeled in a very similar fashion though. While our
approach to multi-modal learning is itself based on the assumption that labels are shared
across modalities, it is designed to still work in cases where the set of overlapping labels is
relatively small. For the special application of scribble-based image retrieval, [Eitz et al.
2011] have introduced a benchmark data set. Unfortunately their data set is aimed at
descriptor-based methods. As a consequence, many labels do not come with the amount of
training data which is required by a learning-based approach such as ours. The results
would be difficult to compare to descriptor based methods which do not require training.

-69 -

-70 -

5 Conclusion and Future Work

We have seen different methods for approaching the problem of semantically structuring
visual data. We derived a novel method for structuring multi-modal visual data based on the
WSABIE method of [Weston et al. 2011] and demonstrated its performance in both uni-
modal as well as the multi-modal scenarios.

Our method is based on the assumption that semantic labels are assigned globally to a given
shape or image. In many cases, interesting information is contained in the local composition
of a shape or image though. One approach to introduce such aspects into our method is an
extension of our descriptors. For example [Xiong et al. 2011] introduce a mechanism in which
descriptors are enriched with application specific information about their neighborhood.
Another interesting approach is to explicitly extract local parts of a shape which are charac-
teristic for a given semantic label, similar to [Shilane et al. 2007] and [Doersch et al. 2012].
Once we know which parts are characteristic for a label, we can use these parts to efficiently
localize instances of a semantic class in a huge scene, or even in a large-scale scanned 3D
point cloud.

More work can be spent on our label aliasing idea. We see two aspects for future research:
First, it is likely that the model can be reformulated to be applicable to more general
machine learning problems. Its fundamental properties in a general setting could then be
explored. Second, we could not observe significant improvements in the label prediction
performance when utilizing label aliasing. More research is necessary to find out the exact
reasons for its failure in our specific setting.

Our multi-modal learning approach could be applied to a larger number of modalities. More
applications can be developed on top of it.

An interesting challenge could be to refine large-scale 3D scans (for example of a whole
town) by replacing individual objects in the scene (such as cars, houses, people etc.) with
more detailed, semantically equivalent 3D meshes. This problem poses three sub-problems:
First, we must be able to locate instances of a given object class in the 3D scan. A solution to
the previously mentioned problem of learning characteristic parts for a label could prove
helpful here. Secondly, once we have located an object, we must find an appropriate replace-
ment from a library of 3D meshes. Our multi-modal learning approach can be utilized for
this problem, as it allows to establish a joint semantic similarity measure across both 3D
point cloud and 3D mesh data. Finally, the 3D mesh from the database must be rescaled and

-71-

aligned properly to the corresponding object instance in the scanned 3D point cloud. A
constellation or part-based model over objects of the given class could provide a good basis
for this, and could potentially be integrated into our learning scheme.

-792 -

6 References

[Arya et al. 1994] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman,
Angela Y. Wu:
An Optimal Algorithm for Approximate Nearest Neighbor Searching
In: ACM-SIAM Symposium on Discrete Algorithms — SODA, pp. 573-582, 1994

[Barrow et al. 1969] H.G. Barrow, S. H. Salter:
Design of low-cost equipment for cognitive robot research
In: Machine Intelligence 5, Edinburgh University Press, pp. 555-566, 1969

[Beyer et al. 1999] Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, Uri Shaft:
When Is “Nearest Neighbor” Meaningful?
In: International Conference on Database Theory — ICDT, pp. 217-235, 1999

[Bokeloh et al. 2008] Martin Bokeloh, Alexander Berner, Michael Wand, Andreas Schilling,
Hans-Peter Seidel:
Slippage Features (Technical Report)
In: WSI-2008-03, University of Tiibingen, 2008

[Bottou 2003] Léon Bottou:
Stochastic Learning
In: Advanced Courses — AC, pp. 146-168, 2003

[Bronstein et al. 2011] Alexander M. Bronstein, Michael M. Bronstein, Leonidas J. Guibas,
Maks Ovsjanikov:
Shape Google: Geometric Words and Expressions for Invariant Shape Retrieval
In: ACM Transactions on Graphics — TOG, vol. 30, no. 1, pp. 1-20, 2011

[Chans et al. 1997] Yin Chans, Zhibin Lei, Daniel P. Lopresti, Sun-Yuan Kung:
Feature-Based Approach for Image Retrieval by Sketch
In: Storage and Retrieval for Image and Video Databases, vol. 3229, pp. 220-231, 1997

[Chua et al. 1997] Chin-Seng Chua, Ray Jarvis:
Point Signatures: A New Representation for 3D Object Recognition
In: International Journal of Computer Vision — [JCV, vol. 25, no. 1, pp. 63-85, 1997

[Coates et al. 2011] Adam Coates, Andrew Y. Ng:
The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization
In: Proceedings of the 28" International Conference of Machine Learning, 2011

[Cortes et al. 1995] Corinna Cortes, Vladimir Vapnik:
Support-Vector Networks
In: Machine Learning — ML, vol. 20, no. 3, pp. 273-297, 1995

[Crammer et al. 2001] Koby Crammer, Yoram Singer:
On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines
In: Journal of Machine Learning Research — JMLR, vol. 2, pp. 265-292, 2001

-73 -

[Dalal et al. 2005] Navneet Dalal, Bill Triggs:
Histograms of Oriented Gradients for Human Detection
In: Computer Vision and Pattern Recognition - CVPR, vol. 1, pp. 886-893, 2005

[Doersch et al. 2012] Carl Doersch, Saurabh Singh, Abhinav Gupta, Josef Sivic, Alexei A. Efros:
What Makes Paris Look Like Paris?
In: ACM Transactions on Graphics - TOG, vol. 31, issue 3, 2012

[Eitz et al. 2011] Mathias Eitz, Kristian Hildebrand, Tamy Boubekeur, Marc Alexa:
Sketch-Based Image Retrieval: Benchmark and Bag-of-Features Descriptors
In: IEEE Transactions on Visualization and Computer Graphics — TVGG, vol. 17, no. 11,
pp. 1624-1636, 2011

[Eitz et al. 2012] Mathias Eitz, Ronald Richter, Tamy Boubekeur, Kristian Hildebrand, Marc Alexa:
Sketch-Based Shape Retrieval
In: ACM Transactions on Graphics - TOG, vol. 31, issue 4, 2012

[Fan et al. 2008] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, Chih-Jen Lin:
LIBLINEAR: A Library for Large Linear Classification
In: Journal of Machine Learning Research — JMLR, vol. 9, pp. 1871-1874, 2008

[Fergus et al. 2005] Robert Fergus, Pietro Perona, Andrew Zisserman:
A Sparse Object Category Model for Efficient Learning and Exhaustive Recognition
In: Computer Vision and Pattern Recognition — CVPR, vol. 1, pp. 380-387, 2005

[Gal et al. 2006] Ran Gal, Daniel Cohen-Or:
Salient Geometric Features for Partial Shape Matching and Similarity
In: ACM Transactions on Graphics — TOG, vol. 25, no. 1, pp. 130-150, 2006

[Gatzke et al. 2005] Timothy Gatzke, Cindy Grimm, Michael Garland, Steve Zelinka:
Curvature Maps for Local Shape Comparison
In: Shape Modeling International, pp. 246-255, 2005

[Jarvelin et al. 2000] Kalervo Jarvelin, Jaana Kekéldinen:
IR Evaluation Methods for Retrieving Highly Relevant Documents
In: Research and Development in Information Retrieval — SIGIR, pp. 41-48, 2000

[Johnson et al. 1999] Andrew Edie Johnson, Martial Herbert:
Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes
In: IEEE Transactions on Pattern Analysis and Machine Intelligence — PAMI,
vol. 21, no. 5, pp. 433-449, 1999

[Kazhdan et al. 2003] Michael M. Kazhdan, Thomas A. Funkhouser, Szymon Rusinkiewicz:
Rotation Invatiant Spherical Harmonic Representation of 3D Shape Descriptors
In: ACM International Conference Proceeding Series — AICPS, pp. 156-165, 2003

[Lazebnik et al. 2003] Svetlana Lazebnik, Cordelia Schmid, Jean Ponce:
Sparse Texture Representation Using Affine-Invariant Neighborhoods
In: Computer Vision and Pattern Recognition — CVPR, 2003

[Li et al. 2007] Xinju Li, Igor Guskov:
3D Object Recognition from Range Images Using Pyramid Matching
In: International Conference on Computer Vision — ICCV, pp. 1-6, 2007

[Li et al. 2012] B. Li, A. Godil, M. Aono, X. Bai, T. Furuya, L. Li, R. Lopez-Sastre, H. Johan,
R. Ohbuchi, C.Redondo-Cabrera, A. Tatsuma, T. Yanagimachi, S. Zhang:
SHREC'12 Track: Generic 3D Shape Retrieval
In: Proceedings of the 5" Eurographics Conference on 3D Object Retrieval — EG 3DOR,
pp. 119-126, 2012

-74 -

[Li et al. SKETCH 2012] B. Li, A. Godil, M. Alexa, T. Boubekeur, B. Bustos, J. Chen, M. Eitz,
T. Furuya, K. Hildebrand, S. Huang, H. Johan, A. Kuijper, R. Ohbuchi, R. Richter,
J. M. Saavedra, M. Scherer, T. Yanagimachi, G. J. Yoon, S. M. Yoon:
SHREC'12 Track: Sketch-Based 3D Shape Retrieval
In: Proceedings of the 5™ Eurographics Conference on 3D Object Retrieval — EG 3DOR, 2012

[Lowe 1999] David G. Lowe:
Object Recognition from Local Scale-Invariant Features
In: International Conference on Computer Vision — ICCV, vol. 2, pp. 1150-1157, 1999

[Niyogi et al. 1999] Partha Niyogi, Chris Burges, Padma Ramesh:
Distinctive Feature Detection Using Support Vector Machines

In: International Conference on Acoustics, Speech, and Signal Processing — ICASSP,
vol. 1, pp. 425-428, 1999

[Pearson et al. 1901] Karl Pearson:
On Lines and Planes of Closest Fit to Systems of Points in Space
In: Philosophical Magazine Series 6, vol. 2, no. 11, pp. 559-572, 1901

[Rennie et al. 2005] Jasson D. M. Rennie, Nathan Srebro:
Fast Maximum Margin Matrix Factorization for Collaborative Prediction
In: International Conference on Machine Learning — ICML, pp. 713-719, 2005

[Russell et al. 2008] Bryan C. Russell, Antonio B. Torralba, Kevin P. Murphy, William T. Freeman:
LabelMe: A Database and Web-Based Tool for Image Annotation
In: International Journal of Computer Vision — IJCV, vol. 77, no. 1-3, pp. 157-173, 2008

[Shilane et al. 2004] Philip Shilane, Patrick Min, Michael M. Kazhdan, Thomas A. Funkhouser:
The Princeton Shape Benchmark
In: Shape Modeling International, pp. 167-178, 2004

[Shilane et al. 2007] Philip Shilane, Thomas A. Funkhouser:
Distinctive Regions of 3D Surfaces
In: ACM Transactions on Graphics - TOG, vol. 26, no. 2, pp. 7-es, 2007

[Tevs et al. 2011] Art Tevs, Alexander Berner, Michael Wand, Ivo Ihrke, Hans-Peter Seidel:
Intrinsic Shape Matching by Planned Landmark Sampling
In: Computer Graphics Forum — CGF, vol. 30, no. 2, pp. 543-552, 2011

[Tibshirani 1996] Robert Tibshirani:
Regression Shrinkage and Selection Via the Lasso
In: Journal of the Royal Statistical Society, Series B (Methodological), 58(1):267-288, 1996

[Usunier et al. 2009] Nicolas Usunier, David Buffoni, Patrick Gallinari:
Ranking with Ordered Weighted Pairwise Classification
In: International Conference on Machine Learning — ICML, pp. 133-1064, 2009

[Weston et al. 2000] Jason Weston, Sayan Mukherjee, Olivier Chapelle, Massimiliano Pontil,
Tomaso Poggio, Vladimir Vapnik:
Feature Seelection for SVMs
In: Neural Information Processing Systems — NIPS, pp. 668-674, 2000

[Weston et al. 2010] Jason Weston, Samy Bengio, Nicolas Usunier:
Large Scale Image Annotation: Learning to Rank with Joint Wort-Image Embeddings
In: Machine Learning — ML, vol. 81, no. 1, pp. 21-35, 2010

[Weston et al. 2011] Jason Weston, Samy Bengio, Nicolas Usunier:
WSABIE: Scaling Up to Large Vocabulary Image Annotation
In: Proceedings of the International Joint Conference on Artificial Intelligence — [JCAI, 2011

[Winder et al. 2007] Simon A. J. Winder, Matthew Brown:
Learning Local Image Descriptors
In: Computer Vision and Pattern Recognition — CVPR, 2007

-75 -

[Wikipedia MDS 2013] Wikipedia:
Multidimensionale Skalierung
In: Wikipedia, Die freie Enzyklopidie. Bearbeitungsstand: 25. Juli 2013, 08:36 UTC.
de.wikipedia.org/w/index.php?title=Multidimensionale_Skalierung&oldid=120873146

[Xiong et al. 2011] Xuehan Xiong, Daniel Munoz, J. Andrew Bagnell, Martial Hebert:
3-D Scene Analysis via Sequenced Predictions over Points and Regions
In: International Conference on Robotics and Automation — ICRA, pp. 2609-2616, 2011

[Yang et al. 2001] Jun Yang, Yueting Zhuang, Qing Li:
Multi-Modal Retrieval for Multimedia Digital Libraries: Issues, Architecture and Mechanisms
In: Workshop on Multimedia Information Systems — MIS, pp. 81-88, 2001

-76 -

	1 Introduction
	2 Representing Objects
	2.1 Related Work
	2.1.1 HOG Image Descriptor
	2.1.2 Harmonic Shape Descriptor
	2.1.3 Bag of Features Model
	Sampling Local Descriptors

	2.2 Our Extensions
	2.2.1 Extending HOG to 3D

	3 Learning Semantic Attributes
	3.1 Related Work
	3.1.1 K Nearest Neighbor
	3.1.2 Linear Support Vector Machine
	3.1.3 Learning a Latent Semantic Space
	Rank Loss and WARP Loss
	Stochastic Gradient Descent Optimization
	Handling Multi-Label Data
	Low-Dimensional Latent Space Learning

	3.2 Our Adaptations
	3.2.1 Optimizations of the Stochastic Gradient Descent
	3.2.2 Utilizing Ground-Truth Label Correlation (Soft Ranking)
	3.2.3 Aliasing Labels to Enable Non-Linear Decision Boundaries

	3.3 Evaluation
	3.3.1 Evaluation Metrics
	3.3.2 Data Sets
	3.3.3 Learning Methods
	3.3.4 Descriptors

	4 Multi-Modal Semantics
	4.1 Related Work
	4.2 Our Approach
	4.2.1 Multi-Modal WSABIE
	4.2.2 Application: A Multi-Modal Semantic Explorer

	4.3 Evaluation

	5 Conclusion and Future Work
	6 References

